
 

 

 
                 UNIVERSITÀ DEGLI STUDI DI SALERNO 

           FACOLTÀ DI INGEGNERIA 

 

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA CIVILE 

 

 

Tesi di Laurea 
in 

Tecnica delle Costruzioni 
 
 

DESIGN–ORIENTED ANALYSIS METHODS FOR 

MASONRY STRUCTURES IN SEISMIC AREAS: 

THEORETICAL FORMULATION AND VALIDATION 

ON EXPERIMENTAL RESULTS  
 
 
 
 

RELATORE CANDIDATO 

Dr. Enzo Martinelli Gerardo Carpentieri 

CORRELATORE Matr. 0620100179 

Dr. Matija Gams 

 

Anno Accademico 2010/2011 





 

 

 

Ad Anna, Sabina e Gerardo, 

faro nella nebbia e consiglio nella scelta.





 

 i 

Contents 

Forewords 1 

1.Introduction and description of the purpose 5 
1.1Motivation 5 
1.2Typical seismic–induced damages 11 

1.2.1 Observed damage 14 
1.3Technical solutions for strengthening 19 

2.Codes for Masonry Structures 23 
2.1Historical evolution 23 

2.1.1 Royal Decree No. 193 of 18/04/1909 25 
2.1.2 Royal Decree No. 2229 of 16/11/1939 26 
2.1.3 Law No. 64 of 02/02/1974 27 
2.1.4 Commentary No. 21745 of 30/07/1981 29 
2.1.5 Ministerial Decree 20/11/1987 38 
2.1.6 Ministerial Decree 16/01/1996 39 
2.1.7 O.P.C.M. No. 3274 of 2003 and O.P.C.M. No. 3431 of 2005 40 

2.2Overview of the codes currently in force in Europe 42 
2.2.1 National codes: NTC 2008 and Commentary No. 617 43 
2.2.2 European rules: Eurocodes 74 

3.Analysis of walls under in-plane earthquake induced actions 89 
3.1Failure modes of masonry panels subject to actions in their plane 89 

3.1.1 Diagonal shear failure 92 
3.1.2 Sliding shear failure 100 
3.1.3 Bending failure 102 
3.1.4 Comparison between different collapse mechanisms 105 

3.2Classification 108 
3.2.1 One-dimensional models: with rigid transverse 109 
3.2.2 One-dimensional models: transverse with no-bending 
stiffness  118 
3.2.3 Equivalent frames models 121 
3.2.4 Bi–dimensional models 125 

3.3Seismic analysis of masonry structures 128 
3.3.1 Linear static analysis 132 



Gerardo Carpentieri  Matr. 06201/00179 

ii 

3.3.2 Nonlinear static analysis: N2 method 135 

4.Analyses models through ordinary FEM codes 137 
4.1Introduction 137 
4.2Linear analyses 137 

4.2.1 One-dimensional elements 138 
4.2.2 Two-dimensional elements 139 
4.2.3 Three-dimensional elements 140 

4.3Nonlinear analyses 141 
4.3.1 Frame elements 141 
4.3.2 Link elements 142 

5.A novel equivalent–frame analysis model 151 
5.1Introduction 151 
5.2Frame element formulation 152 

5.2.1 Description of the flexible part 152 
5.2.2 Assembly of the rigid segments 153 
5.2.3 Final formulation 155 
5.2.4 Validation within the linear range 156 

5.3Nonlinear behaviour 164 
5.3.1 Introduction and general principles 164 
5.3.2 General principles 166 
5.3.3 Application to the case of masonry 167 
5.3.4 Implementation of the numerical procedure 176 

6.Validation of the proposed models 185 
6.1Introduction 185 
6.2Modelling masonry structures 187 

6.2.1 Modelling based on frame elements 187 
6.2.2 Modelling with link elements 188 

6.3Experiments on a shaking table 191 
6.3.1 Physical modelling 191 
6.3.2 Prototype structure 193 
6.3.3 Physical models 195 
6.3.4 Model materials 198 
6.3.5 Shaking table and testing procedure 207 

6.4Numerical analyses 213 
6.4.1 Description of the modelling 213 



Contents 

 iii 

6.4.2 M3 model: geometric and mechanical properties 216 
6.4.3 Structural model for N2 method 228 
6.4.4 Structural model for POR method 230 
6.4.5 Application of N2 method 231 
6.4.6 N2 analyses with real spectra 251 
6.4.7 Evolution of the axial forces 258 
6.4.8 Manual analysis of the axial force from experiments 259 

6.5Comparisons between the methods and experimental data 270 
6.5.1 Data acquisition 270 
6.5.2 Data analysis 274 
6.5.3 Shear versus displacement curves 275 
6.5.4 Idealisations 278 
6.5.5 Comparisons 279 

7.Conclusions 283 

References 285 

Acknowledgements 291 
 

 

 

 

 

 



Gerardo Carpentieri  Matr. 06201/00179 

iv 

 

 

 

 

 

 

 

 

 

 



Contents 

 v 

Lists of  figures  

Figure 1.1: A popular masonry structure (to the left) and Iside’s Temple at Pompei (to the right). .. 5 

Figure 1.2: Stone masonry (Roman ruins of Abellinum, on the left) and brick masonry (Forum of 

Rome, on the right). ...................................................................................................................................................... 6 

Figure 1.3: Masonry wall during a cyclic lateral resistance test at ZAG [2]. .............................................. 7 

Figure 1.4: Church of Santa Maria del Suffragio, before and after L’Aquila earthquake in 2009,       

M 5,9  [3]. ......................................................................................................................................................................... 7 

Figure 1.5: Seismic hazard map of the National territory [4]. ........................................................................ 8 

Figure 1.6: Partial collapse in a masonry building after L’Aquila earthquake [3]. ............................... 11 

Figure 1.7: Interventions on a Church in L’Aquila to prevent other damages [3].................................. 12 

Figure 1.8: Framework of possible cracks in masonry building [7]. .......................................................... 13 

Figure 1.9: Examples 1 [8]. ...................................................................................................................................... 14 

Figure 1.10: Example 2 [8]. ..................................................................................................................................... 14 

Figure 1.11: Examples 3 [8]. ................................................................................................................................... 15 

Figure 1.12: Example 4 [8]. ..................................................................................................................................... 15 

Figure 1.13: Examples 5 [8]. ................................................................................................................................... 16 

Figure 1.14: Example 6 [8]. ..................................................................................................................................... 16 

Figure 1.15: Example 7 [8]. ..................................................................................................................................... 17 

Figure 1.16: Example 8 [8]. ..................................................................................................................................... 17 

Figure 1.17: Examples 9 [8]. ................................................................................................................................... 18 

Figure 1.18: Example 10 [8]. ................................................................................................................................... 18 

Figure 1.19: Strengthening of a vault with CFRP [3]. ..................................................................................... 19 

Figure 1.20: Scheme of a diffused injections in a masonry wall [7]............................................................ 20 

Figure 1.21: Design of a reinforced plaster [7]. ................................................................................................ 20 

Figure 1.22: Tie–beams for vertical wall in Ninfa – Latina [7]. ................................................................... 21 

Figure 2.1: Collapse mechanisms [17]. ................................................................................................................ 29 

Figure 2.2: Panel’s pseudo constitutive behaviour [17]. ................................................................................ 33 

Figure 2.3: Panel’s geometry [17]. ........................................................................................................................ 34 

Figure 2.4: Modelling of a wall with POR method. ........................................................................................... 35 

Figure 2.5: Modelling of a structure facade [17]. ............................................................................................. 35 



Gerardo Carpentieri  Matr. 06201/00179 

vi 

Figure 2.6: Shear–displacement behaviour of the wall. ................................................................................. 36 

Figure 2.7: Typical Elastic response spectrum. ................................................................................................. 66 

Figure 2.8: Typical Design spectrum. ................................................................................................................... 67 

Figure 2.9: Abacus of some mechanisms of collapse of the churches [5]. ................................................. 73 

Figure 2.10: Recommended Type 1 elastic spectrum for soil types A through E (5% damping) [31].

.......................................................................................................................................................................................... 80 

Figure 3.1: Load pattern and size of the masonry panel................................................................................ 90 

Figure 3.2: Possible collapse mechanisms [34]. ................................................................................................ 91 

Figure 3.3: Evolution of tangential stresses in the section. ........................................................................... 92 

Figure 3.4: Stress state of a central element and the corresponding Mohr circle. ................................. 93 

Figure 3.5: Variation of the ultimate diagonal shear as a function of the vertical compression. ..... 96 

Figure 3.6: Bricks subjected to shear [37]. ......................................................................................................... 98 

Figure 3.7: Cross section analysis. ....................................................................................................................... 101 

Figure 3.8: ULS analysis for buckling of a masonry cross section. ............................................................ 103 

Figure 3.9: Bi-linear shear behaviour. ............................................................................................................... 106 

Figure 3.10: Variation of ultimate shear stress in relation to normal (FN) for the three collapse 

modes. .......................................................................................................................................................................... 107 

Figure 3.11: Real wall (on the left) and POR modelling. .............................................................................. 109 

Figure 3.12: Constitutive law of a single masonry panel and relative idealisation. ............................ 110 

Figure 3.13: Constitutive law of a wall obtained by the POR method. ..................................................... 113 

Figure 3.14: Comparison between approximate methods and sophisticated methods. ..................... 115 

Figure 3.15: Equivalent frame of the Porflex method. .................................................................................. 116 

Figure 3.16: Constitutive laws of the resistant elements in Porflex. ......................................................... 117 

Figure 3.17: Wall model with transverse of nothing flexural stiffness and no floor beams. ............. 118 

Figure 3.18: Wall model with transverse of nothing flexural stiffness and efficient floor beams. .. 119 

Figure 3.19: Schematic equivalent frame of a wall loaded in the plane [39]. ....................................... 122 

Figure 3.20: Effective length in piers [39]. ....................................................................................................... 123 

Figure 3.21: Definition of the effective length of the spandrel [39]. ......................................................... 124 

Figure 3.22: Model with finite element with variable geometry [39]. ..................................................... 125 

Figure 3.23: Multi–array element [39]. ............................................................................................................. 126 

Figure 3.24: Bi-dimensional finite elements. ................................................................................................... 127 



Contents 

 vii 

Figure 3.25: Transition from elastic behaviour to an elastic perfectly plastic behaviour................. 128 

Figure 3.26: Change of the q–factor as a function of the vibration period for fixed values of 

ductility. ...................................................................................................................................................................... 129 

Figure 3.27: Case 2. .................................................................................................................................................. 131 

Figure 3.28: Scheme of pushover test................................................................................................................. 135 

Figure 3.29: Comparison between the pushover curve obtained with test in force control (1) and 

that obtained in displacements control (2)...................................................................................................... 136 

Figure 4.1: Frame model (on the left) and deformed shape (in the right). ............................................ 138 

Figure 4.2: Shell model (on the left) and deformed shape (on the right). .............................................. 139 

Figure 4.3: Resultant shear stress (F12) diagram. ........................................................................................ 140 

Figure 4.4: Last pushover step and relative shear diagram. ...................................................................... 146 

Figure 4.5: Pushover curve. ................................................................................................................................... 146 

Figure 4.6: Axial force diagram. .......................................................................................................................... 147 

Figure 4.7: Shear force diagram. ......................................................................................................................... 147 

Figure 4.8: Moment diagram. ............................................................................................................................... 148 

Figure 5.1: Truss element. ..................................................................................................................................... 152 

Figure 5.2: Test 1 – 2 – 3. ....................................................................................................................................... 157 

Figure 5.3: Test 4 – 5 – 6. ....................................................................................................................................... 157 

Figure 5.4: Test 7 – 8 – 9. ....................................................................................................................................... 158 

Figure 5.5: Scheme 1: unitary rotation at the joint i. .................................................................................... 168 

Figure 5.6: Scheme 2: unitary displacement at the joint j. .......................................................................... 168 

Figure 5.7: Behaviour near the domain. ........................................................................................................... 169 

Figure 5.8: Frame in elastic range. ..................................................................................................................... 170 

Figure 5.9: Nodal actions in the frame. ............................................................................................................. 172 

Figure 5.10: Elastic prediction and plastic correction. ................................................................................ 173 

Figure 5.11: Analysis of the secant stiffness matrix. ...................................................................................... 174 

Figure 5.12: Real wall (on the left) and relative frame modelling............................................................ 176 

Figure 5.13: Wall prospect and relative frame model. ................................................................................. 177 

Figure 5.14: Coordinate and displacement system. ....................................................................................... 178 

Figure 5.15: Behaviour of the wall during the load steps. ........................................................................... 184 

Figure 6.1: Modelling of a two level masonry wall with openings for the window. ............................ 187 



Gerardo Carpentieri  Matr. 06201/00179 

viii 

Figure 6.2: Modelling a deformable element through a link element. ..................................................... 189 

Figure 6.3: Loading process [52]. ........................................................................................................................ 189 

Figure 6.4: Shear behaviour. ................................................................................................................................. 190 

Figure 6.5: Rotation behaviour. ........................................................................................................................... 190 

Figure 6.6: Axial behaviour. .................................................................................................................................. 190 

Figure 6.7: Dimensions of the idealised prototype building in plan and position of vertical confining 

elements [55]. ............................................................................................................................................................ 193 

Figure 6.8: Isometric view on the prototype of the tested model M3 [55]. ............................................. 194 

Figure 6.9: Dimensions of the models in plan [55]. ........................................................................................ 195 

Figure 6.10: Plan and vertical sections of model M3 [55]. .......................................................................... 196 

Figure 6.11: Distribution of weights on the floors of model M3 – fourth floor [55]. ........................... 197 

Figure 6.12: Dimensions and instrumentation of specimens for compression test (left); typical 

model wall at the end of compression test [55]. ............................................................................................. 200 

Figure 6.13: The results of compression tests [55]......................................................................................... 200 

Figure 6.14: Test set–up for cyclic shear tests of model masonry walls [55]. ........................................ 201 

Figure 6.15: Imposed displacement pattern [55]. .......................................................................................... 202 

Figure 6.16: Instrumentation of model walls for shear tests [55]............................................................. 203 

Figure 6.17: Flexural failure of a plain (left) and shear failure of a confined masonry wall (right) 

[55]................................................................................................................................................................................ 205 

Figure 6.18: Test set–up for the diagonal compression test [55]. ............................................................. 206 

Figure 6.19: Shaking table with one of the models, ready for testing. Steel reaction wall and 

hydraulic actuator can be seen in front of the table [55]. ........................................................................... 208 

Figure 6.20: Steel supporting frame to fix the displacement transducers during  the testing of 

model M3 [55]. .......................................................................................................................................................... 210 

Figure 6.21: N-S component of the acceleration time history of the Montenegro, April 15, 1979 

earthquake (Petrovac, Hotel Oliva record. Source: ESM database) [55]. ............................................... 211 

Figure 6.22: North wall and the model.............................................................................................................. 213 

Figure 6.23: South side and the model............................................................................................................... 214 

Figure 6.24: East and west side and their model. ........................................................................................... 214 

Figure 6.25: 3D view. ............................................................................................................................................... 215 

Figure 6.26: Numbering of masonry walls [55]. ............................................................................................. 216 

Figure 6.27: Reference system. ............................................................................................................................. 218 



Contents 

 ix 

Figure 6.28: Deformation of the structure at a generic step load pushover analysis. ........................ 228 

Figure 6.29: Shear in the link at Step 8 of the pushover with linear forces. North elevation (on the 

left) and south elevation (on the right). ............................................................................................................ 229 

Figure 6.30: Shear in the link at Step 8 of the pushover with linear forces. East elevation (on the 

left) and west elevation (on the right). .............................................................................................................. 229 

Figure 6.31: Structure used for the pushover analysis with the POR method. ...................................... 230 

Figure 6.32: Elastic acceleration spectrum. ..................................................................................................... 234 

Figure 6.33: Elastic displacement spectrum. ................................................................................................... 235 

Figure 6.34: Elastic spectrum in AD format. .................................................................................................... 235 

Figure 6.35: Pushover curve. N2 Method. Constant forces. ......................................................................... 236 

Figure 6.36: Pushover curve. N2 Method. Linear forces. .............................................................................. 236 

Figure 6.37: Pushover curve. N2 Method. Linear force. Rigid floors. ....................................................... 237 

Figure 6.38: Comparison between flexible and rigid floors. ....................................................................... 237 

Figure 6.39: Pushover curve. N2 Method. Linear forces. SDOF system. Flexible floors. ...................... 239 

Figure 6.40: Pushover curve. N2 Method. Linear forces. SDOF system. Rigid floors............................ 239 

Figure 6.41: Pushover curve. Idealisation. SDOF system.............................................................................. 241 

Figure 6.42: Pushover curve. Idealisation. SDOF system. Rigid floors. .................................................... 241 

Figure 6.43: Result for ag = 0,25 g. ...................................................................................................................... 244 

Figure 6.44: Result for ag = 0,50 g. ...................................................................................................................... 245 

Figure 6.45: Result for ag = 1,29 g. ...................................................................................................................... 245 

Figure 6.46: Result for rigid floors. ..................................................................................................................... 246 

Figure 6.47: Link elements behaviour................................................................................................................ 247 

Figure 6.48: Status of link element in step 17 (29,06 mm). North elevation (on the left) and south 

elevation (on the right). ......................................................................................................................................... 248 

Figure 6.49: Status of link element in step 17 (29,06 mm). Central wall (number 5). ....................... 248 

Figure 6.50: Status of link element in step 23 (42,75 mm). North elevation (on the left) and south 

elevation (on the right). ......................................................................................................................................... 249 

Figure 6.51: Status of link element in step 23 (42,75 mm). Central wall (number 5). ....................... 249 

Figure 6.52: Status of link element in step 15 (27,20 mm) with rigid floors. North elevation (on the 

left) and south elevation (on the right). ............................................................................................................ 250 

Figure 6.53: Status of link element in step 15 (27,20 mm). Central wall (number 5). ....................... 250 

Figure 6.54: Modelled earthquake accelerogram for R150. ....................................................................... 251 



Gerardo Carpentieri  Matr. 06201/00179 

x 

Figure 6.55: Modelled earthquake accelerogram for R250. ....................................................................... 251 

Figure 6.56: SDOF system. ..................................................................................................................................... 252 

Figure 6.57: Real elastic acceleration spectrums and comparisons......................................................... 255 

Figure 6.58: Real elastic displacement spectrum. .......................................................................................... 255 

Figure 6.59: Real elastic spectrum in AD format. ........................................................................................... 256 

Figure 6.60: Capacity vs. demand for R150 and rigid floors. ...................................................................... 257 

Figure 6.61: Capacity versus demand for R250 and rigid floors. .............................................................. 257 

Figure 6.62: Plant and number of piers. ............................................................................................................ 258 

Figure 6.63: Change of reference system. ......................................................................................................... 259 

Figure 6.64: Change of axial force evolution. SAP2000® analysis. ........................................................... 263 

Figure 6.65: Axial force evolution by the test. ................................................................................................. 269 

Figure 6.66: Axonometric of the measurement points of experimental data [55]. .............................. 270 

Figure 6.67: Cracks in the peripheral walls of model M3, observed after test run R100 [55]. ......... 272 

Figure 6.68: Typical diagonally oriented shear cracks in the walls of model M3 at maximum 

resistance after test run R150 [55]. .................................................................................................................... 272 

Figure 6.69: Severe damage to the walls in the ground floor and heavy damage to the walls in the 

first storey near collapse of model M3 after test run R250 [55]. ............................................................... 273 

Figure 6.70: Base shear vs. first floor displacement. R150. ......................................................................... 275 

Figure 6.71: Base shear vs. first floor displacement. R200. ......................................................................... 275 

Figure 6.72: Base shear vs. first floor displacement. R250. ......................................................................... 276 

Figure 6.73: Base shear vs. fourth floor displacement. R150. ..................................................................... 276 

Figure 6.74: Base shear vs. fourth floor displacement. R200. ..................................................................... 277 

Figure 6.75: Base shear vs. fourth floor displacement. R250. ..................................................................... 277 

Figure 6.76: Base shear vs. first floor displacement Idealisation. ............................................................. 278 

Figure 6.77: Base shear vs. fourth floor displacement Idealisation. ......................................................... 278 

Figure 6.78: Comparison between experimental curve and one storey model. .................................... 279 

Figure 6.79: Comparison between experimental curve and four storey model with control 

displacement at the first floor slab. .................................................................................................................... 279 

Figure 6.80: Comparison between experimental curve and four storey model with rigid floors and 

control displacement at the top of the structure. ........................................................................................... 280 

Figure 6.81: Comparison between experimental curve and four storey model with control 

displacement at the top. ......................................................................................................................................... 280 



Contents 

 xi 

Figure 6.82: Comparison between one storey model and four storey model with control 

displacement at first storey................................................................................................................................... 281 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gerardo Carpentieri  Matr. 06201/00179 

xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Contents 

 xiii 

Lists of tables 

Table 1.1: Residential buildings for type of material used for the structure [1]. ...................................... 5 

Table 2.1: Masonry’s mechanical characteristics [17]. .................................................................................. 31 

Table 2.2: Ductility factors  [17]. ........................................................................................................................... 34 

Table 2.3: Classification of brick elements [6]. .................................................................................................. 43 

Table 2.4: Classification of concrete elements [6]. ........................................................................................... 43 

Table 2.5: Values of γM coefficient [6]. ................................................................................................................. 44 

Table 2.6: Φ coefficient values with the assumption of hinged joints [6]. ................................................ 45 

Table 2.7: Area resistant walls in each orthogonal direction to simple constructions [6]. ................. 48 

Table 2.8: Geometric requirements of earthquake resistant walls [6]. ..................................................... 48 

Table 2.9: Classes of mortars with guaranteed performance [6]. ............................................................... 49 

Table 2.10: Classes of mortars with prescribed composition [6]. ................................................................ 49 

Table 2.11: Coefficient k values [6]. ...................................................................................................................... 50 

Table 2.12: fk values for masonry with artificial element full and semi-full (in N/mm2) [6]. ............ 50 

Table 2.13: fk values for masonry with natural element full and semi-full (in N/mm2) [6]. ............... 50 

Table 2.14: Characteristic shear resistance in absence of normal stress fvk0 (in N/mm2) [6]. ........... 51 

Table 2.15: Levels of knowledges [6]. ................................................................................................................... 52 

Table 2.16: Reference values of mechanical parameters [23]. .................................................................... 53 

Table 2.17: Correction factors of the mechanical parameters [23]. .......................................................... 54 

Table 2.18: Performance of the Service Limit State [6].................................................................................. 57 

Table 2.19: Performance of the Ultimate Limit State [6]. ............................................................................. 58 

Table 2.20: Damage levels [6]. ............................................................................................................................... 59 

Table 2.21: Regularity requirements [6]. ............................................................................................................ 60 

Table 2.22: Values of q0 for different structural types [6]. ............................................................................ 62 

Table 2.23: Seismic hazard parameters  [6]. ..................................................................................................... 62 

Table 2.24: Nominal life for different types of building  [6]. ......................................................................... 63 

Table 2.25: Values of the use coefficient  [6]. ..................................................................................................... 63 

Table 2.26: Probability of overcoming at vary limit state considered [6]. ............................................... 63 

Table 2.27: Category of subsoil [6]. ...................................................................................................................... 64 



Gerardo Carpentieri  Matr. 06201/00179 

xiv 

Table 2.28: Additional category of subsoil [6]. ................................................................................................. 64 

Table 2.29: Topographical category [6]. ............................................................................................................ 64 

Table 2.30: Expressions of SS and CC  [6]. ............................................................................................................ 65 

Table 2.31: Values of the topographic amplification coefficient [6]. ......................................................... 65 

Table 2.32: Probability of exceedance in 50 years of seismic action (P) and factors of importance 

for the ULS verification γf of cultural heritage protection [5]...................................................................... 70 

Table 2.33: Probability of exceedance in 50 years of seismic action (P) and factors of importance 

for the DLS verification γf of cultural heritage protection [5]. .................................................................... 71 

Table 2.34: Definition of levels of depth investigations on different aspects of knowledge and 

confidence for partial factors [5]. ......................................................................................................................... 71 

Table 2.35: Summary for the evaluation of seismic capacity [5]. ............................................................... 72 

Table 2.36: Recommended values of γM  [28]. ................................................................................................... 75 

Table 2.37: Geometrical requirements for Grouping of Masonry Units [28]. .......................................... 76 

Table 2.38: Characteristic strengths of concrete infills [28]. ........................................................................ 77 

Table 2.39: Values of K for use with general purpose, thin layer and lightweight mortars [28]. ..... 77 

Table 2.40: Values of the initial shear strength of masonry [28]. ............................................................... 78 

Table 2.41: Ground types [31]. ............................................................................................................................... 79 

Table 2.42: Values of parameters of the elastic response spectrum recommended of Type 1 [31]. . 80 

Table 2.43: Values of parameters of the elastic response spectrum recommended of Type 2 [31]. . 80 

Table 2.44: Effects of structural regularity on analysis and seismic design [31]. .................................. 81 

Table 2.45: Types of construction and the upper limit of the q–factor  [31]. .......................................... 82 

Table 2.46: Geometrical requirements recommended for shear walls [31]............................................. 83 

Table 2.47: Number of floor recommended to be granted above the ground level and minimum 

area of shear walls for "simple masonry buildings" [31]. .............................................................................. 84 

Table 2.48: Knowledge levels and corresponding methods of analysis (LF: Lateral Force procedure, 

MRS: Modal Response Spectrum analysis) and confidence factors (CF) [31].......................................... 85 

Table 2.49: Values of material properties and criteria for analysis and safety verification [31]. .... 86 

Table 4.1: General parameters of piers and spandrels. ................................................................................ 142 

Table 4.2: Analysis of the ultimate shear. ......................................................................................................... 144 

Table 4.3: Analysis of the shear behaviour. ...................................................................................................... 145 

Table 4.4: Joint displacement. .............................................................................................................................. 148 

Table 4.5: Element forces in frames.................................................................................................................... 149 



Contents 

 xv 

Table 5.1: Test 1-9. ................................................................................................................................................... 161 

Table 5.2: Test 10-11. .............................................................................................................................................. 162 

Table 5.3: Test 12. .................................................................................................................................................... 163 

Table 5.4: Classification of nonlinear analysis [45]. ...................................................................................... 165 

Table 5.5: Points’ coordinates. ............................................................................................................................. 177 

Table 5.6: Truss connectivity. ............................................................................................................................... 178 

Table 5.7: Truss characteristics. .......................................................................................................................... 179 

Table 5.8: Forces on the wall. ............................................................................................................................... 180 

Table 5.9: Boundary condition. ............................................................................................................................ 180 

Table 6.1: Scale factors in the case of the complete model similitude [55]. ........................................... 192 

Table 6.2: Model M3. Mass distribution at floor levels [55]. ....................................................................... 197 

Table 6.3: Mechanical properties of YTONG masonry [55]. ........................................................................ 198 

Table 6.4: Compressive strength of model YTONG blocks [55]. ................................................................. 198 

Table 6.5: Compressive and bending strength of thin layer mortar used for the construction of 

model M3 [55]. .......................................................................................................................................................... 199 

Table 6.6: Results of compression tests of model masonry [55]. ............................................................... 201 

Table 6.7: Imposed displacement pattern [55]. .............................................................................................. 202 

Table 6.8: Designation and dimensions of model walls for cyclic lateral tests.  l, h and t are length, 

height, and thickness of the walls, respectively [55]. .................................................................................... 203 

Table 6.9: Resistance and displacements (rotation) at characteristic limit states [55]. ................... 204 

Table 6.10: Resistance and displacement capacity of model walls [55]. ................................................ 204 

Table 6.11: Failure mechanisms and resistance of the tested model walls [55]. .................................. 205 

Table 6.12: Tensile strength of the model YTONG masonry [55]. ............................................................. 206 

Table 6.13: Correlation between the maximum actual measured and programmed input 

displacements and accelerations of the shaking table motion during the testing of model M3 [55].

........................................................................................................................................................................................ 212 

Table 6.14: General data of the walls. Each floors. ........................................................................................ 220 

Table 6.15: Analysis of ultimate shear ultimate for diagonal cracking of the piers on each floor. 221 

Table 6.16: Analysis of axial force and curvature at first and second floors. ........................................ 222 

Table 6.17: Analysis of axial force and curvature at third and fourth floors. ....................................... 223 

Table 6.18: First floor. Diagonal shear parameters. ..................................................................................... 224 

Table 6.19: Second floor. Diagonal shear parameters. ................................................................................. 224 



Gerardo Carpentieri  Matr. 06201/00179 

xvi 

Table 6.20: Third floor. Diagonal shear parameters..................................................................................... 225 

Table 6.21: Fourth floor. Diagonal shear parameters. ................................................................................. 225 

Table 6.22: All floors. Axial behaviour. .............................................................................................................. 226 

Table 6.23: All floors. Mass and weight of the wall........................................................................................ 227 

Table 6.24: Values of type 1 spectrum [31]. ..................................................................................................... 232 

Table 6.25: Values of type 2 spectrum [31]. ..................................................................................................... 232 

Table 6.26: Scaled values of type 1 spectrum. ................................................................................................. 232 

Table 6.27: Scaled values of type 2 spectrum. ................................................................................................. 233 

Table 6.28: Values of reduction factor and ductility. .................................................................................... 243 

Table 6.29: Displacement demand. ..................................................................................................................... 244 

Table 6.30: Ductility factor. .................................................................................................................................. 256 

Table 6.31: Displacement demand. ..................................................................................................................... 256 

Table 6.32: Piers mechanical characteristics. ................................................................................................. 260 

Table 6.33: Change of axial force in link element for rigid floors. ............................................................ 262 

Table 6.34: Analysis of the bending moment by the test on M3 model. ................................................... 265 

Table 6.35: Axial stress in piers. ........................................................................................................................... 266 

Table 6.36: Axial force in piers. ............................................................................................................................ 267 

Table 6.37: Variation of the axial force in piers.............................................................................................. 268 

Table 6.38: Name and type of experimental data collected during the test [55]. ................................ 271 

 

 

 

 

 



 

 1 

Forewords 

This Thesis completes the two-year Master Course in Civil Engineering at the 

University of Salerno and reports some of the results obtained during an 

internship period at the ZAG (Slovenian National Building and Civil 

Engineering Institute) in Ljubljana under the supervision of Dr. Matija Gams 

who is also co-tutor of this thesis.  

The work is intended at formulating and validating design–oriented models 

for analysing the seismic response of masonry structures. Since modelling 

those structures is a challenging open issue, this research aims at providing 

designers with simplified methods which could be employed for ordinary 

design purpose. In particular this work explores the possibility to analyse 

masonry walls with frames modelling. This purpose is attained by either 

modelling the masonry walls with finite element programs or using simplified 

methods.  

The chapter 1 introduces the key aspects of the mechanical response of 

existing buildings in Italy and in Europe, and focuses on the seismic response 

of masonry structures. The typical damage suffered by those structures in 

recent earthquake events are outlined and the most common strengthening 

techniques briefly described. 

Chapter 2 proposes both an overview of the evolution of the seismic codes in 

Italy and a thorough description of the key documents currently in force for 

seismic design of new masonry structures and assessment of existing ones. 

Thus, the Italian Code of Standards for Structures in Seismic areas as well as 

the relevant Eurocodes are examined with the aim of pointing out the main 

provisions about the key subject of this thesis which is mainly intended at 
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describing the most common design-oriented analysis method for structures 

under seismic actions. 

Since the thesis actually investigates several alternative methods for seismic 

analysis of masonry structures under seismic actions, chapter 3 outlines the 

results of some experimental tests already available in the scientific literature. 

The experimental results under consideration have been mainly carried out at 

ZAG during the last years. They could be possibly employed for assessing the 

accuracy of the above mentioned methods.  

The following two chapters represent somehow the core of the thesis. They 

propose various analysis methods for masonry structures. Although several 

methods are actually available in the scientific literature this work focuses on 

those which can actually be employed by practitioners in the ordinary 

engineering activities. Thus, chapter 4 describes different approaches which 

can be possibly followed by using an ordinary FEM package. Both 2D- and 

frame-elements are employed for implementing alternative numerical models 

aimed at performing either linear or nonlinear seismic analyses. A couple of 

case-studies are modelled according to those approach, as the results of 

relevant experimental tests are available in the scientific literature and can be 

utilised in the following chapter for a possible validation. 

Moreover, chapter 5 propose a novel frame-like model for analysing 2D 

masonry façades under seismic actions. It is intended at implementing the 

capacity models actually adopted by the seismic codes currently in force in 

Italy and Europe for simulating the nonlinear behaviour of both walls and 

spandrels. The stiff panel zones is also implemented in those elements and the 

nonlinear behaviour is actually implemented according to a “lumped” 

approach. Thus, a couple of nonlinear springs are considered for simulating 

the possible failure in bending, whereas another couple of shear springs 

models the failure in sliding shear. The model is implemented in a numerical 

code developed in MatLab® and is firstly employed for pointing out some of 



  Forewords 

 3 

the key aspects of the seismic response of masonry structures under seismic 

actions. 

Then, the results of the numerical simulations carried out through the 

numerical models presented in both chapter 4 and 5 are presented in chapter 

6 with the aim of comparing those numerical simulations with experimental 

results already available in the scientific literature and outlined in chapter 3. 

The simulation carried out by means of the frame-like model implemented in 

SAP2000® is in rather good agreement with the experimental results 

considered in this study. As a matter of principle, the lack in modelling the 

shear-normal force interaction in simulating the possible sliding-shear failure 

is the key drawback of the model under consideration. In fact, this flaw is not 

relevant for the considered comparison, as masonry generally fails in bending 

in the considered case-study. However, this possible drawback is overcome by 

the novel numerical model presented in chapter 5. This is the main 

achievement of the present thesis and can be used in numerically-efficient 

(and thus design-oriented) simulations of masonry structures by 

implementing all the capacity models ideally considered by the structural 

codes currently in force in both Italy and Europe. According to those 

documents the proposed model can be employed in performing nonlinear 

static (pushover) analysis for determining both seismic capacity and demand 

of masonry structures under seismic excitation. The possible extension of the 

present model to the case of fully 3D structures as well as the implementation 

of a numerical routine for performing nonlinear time-history analyses are 

among the next developments of this research. 
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1. Introduction and description of the purpose 

1.1 Motivation 

Many existing buildings in Italy and in various European countries are made of 

masonry structures. As shown in the Table 1.1, produced by ISTAT (Italian 

National Institute of Statistics) [1], more than 60% of existing buildings are 

made of masonry. 
Table 1.1: Residential buildings for type of material used for the structure [1]. 

Material type Residential buildings [%] 

Masonry 6903982 61,5 
Reinforced concrete 2768205 24,7 

Other 1554408 13,8 
Total 11226595 100,0 

The housing stock under consideration (two significant examples are in Figure 

1.1) is very diversified. It includes both popular structures of low interest and 

historical buildings characterised by a significant cultural value and often 

regarded as “cultural heritage”.  

        
Figure 1.1: A popular masonry structure (to the left) and Iside’s Temple at Pompei (to the right). 
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Most of the existing masonry are made of bricks or natural stones (see Figure 

1.2). Those two materials can be also combined in different ways. The housing 

stock also includes buildings of different ages, in many cases more than a 

century.  This means that cannot be regarded as a unique structural typology, 

but require, in principle, different dedicated testing, analysis and design 

methods. 

From this point of view, the existing codes, which are derived from historical 

norms, they will be described in detail and discussed in the next chapter, 

always distinguish between new structures and existing structures. In 

particular, the analysis methods for existing structures are more affected by 

uncertainties because of the numerous unknowns about the section’s 

geometry and the materials’ strength. 

The same wall material, moreover, is in fact heterogeneous and almost never 

equivalent to an isotropic material. The masonry is made up of elements of 

considerable size (bricks or stones) connected by mortar joints.  

     
Figure 1.2: Stone masonry (Roman ruins of Abellinum, on the left) and brick masonry (Forum of 

Rome, on the right). 

Thus determining the actual properties of masonry (including tensile strength, 

compressive strength, ductility, constitutive law, rigidity of the elements), by 

experimental tests is often a complicated issue.  

The execution of those tests (see Figure 1.3) is, therefore, very expensive and 

requires specialised staff and large areas in advanced testing laboratories. 
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Figure 1.3: Masonry wall during a cyclic lateral resistance test at ZAG [2]. 

The masonry structures in the past were often realised according to the rules 

of good practice that has been obtained from observation of the results 

produced in similar structures. In practice, especially for multi secular 

structures, they were not done the analysis but they follow the "rules of art", 

which was known by tradition. The result of the work carried out this way is 

not necessarily wrong. Indeed, many of the structures of the past are well 

realised and still in use nowadays. However, damages in masonry structures 

often arise after exceptional events wich overstress the structures. 

Earthquakes can be a class of those damaging events. 

 
Figure 1.4: Church of Santa Maria del Suffragio, before and after L’Aquila earthquake in 2009,       

M 5,9  [3]. 
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Constructions in seismogenic zones, in fact, are almost regularly destroyed by 

the earthquakes (as shown in Figure 1.4). This causes from one side the 

damage in terms of loss of human lives and other direct economic losses (for 

the construction collapse) and indirect (other loss resulting from the 

collapse).  

The major innovation of the modern analysis methods in seismic zones is the 

so–called "seismic microzonation" (shown in Figure 1.5). This was introduced 

with the current technical norm. In practice hazard parameters have been 

defined point–by–point basis in all the Italian territory. This result was 

achieved by means of a "seismic hazard map" by the Geophysics and 

Vulcanology National Institute [4]. This work has allowed a major step 

forward in seismic analysis.  

 
Figure 1.5: Seismic hazard map of the National territory [4]. 
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In fact, they have been abandoned the previous seismic macrozone of the 

Italian territory, where they had set a few parameters of seismic hazard for 

large areas of Italian territory. The old methods, in fact, did not allow to take 

into due account local site properties. This leads to unnecessarily oversized 

projects in some areas, improperly disadvantaged.  The seismic analysis on 

masonry structures, often, present additional problems because they relate to 

existing structures. This fact require an interdisciplinary knowledge. Work on 

masonry structures, for example, cannot ignore the knowledge of the 

historical and cultural context.  

The interventions have the following characteristics:  

1) reversibility: the intervention must be removed without damage to other 

structures; 

2) compatibility: the intervention must use materials similar to those of the 

original; 

3) minimization: the intervention must be little invasive. 

The safety evaluation of an existing building is necessary when there is a 

degradation of structural and non-structural evident as a result of: 

1) seismic events; 

2) action of wind and snow; 

3) subsidence in the foundation; 

4) fires; 

5) change of use. 

To proceed to work on these structures and to reduce the uncertainties of the 

analysis is essential to achieve a good level of knowledge through the 

execution of a research on: 

1) materials used for masonry; 

2) geometry: dimensions of the wall panels; 

3) types and structural characteristics of floors and roofs; 

4) type and size of foundations; 
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5) reference standards and analysis methods used at the time of realization. 

For historical and cultural buildings is necessary to refer to the specifications 

of Legislative Decree No. 42 in 22/01/2004 entitled "Code of the cultural 

heritage and landscape" [5].  
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1.2 Typical seismic–induced damages 

To proceed a correct action on a building and to give an opinion on the 

security is necessary an investigation of the instability and an appropriate 

level of general knowledge of the existing structure. 

The first and most important thing to do, to obtain the information necessary 

to evaluate the level of damage that it has suffered a structure in time, is the 

reading of the crack (see Figure 1.6).  

 
Figure 1.6: Partial collapse in a masonry building after L’Aquila earthquake [3]. 

A high level of damage, with very large and thick cracks and partial collapse, is 

a sure sign of unfitness for the use of the existing structure. The presence, 

however, of minor damage is certainly a good sign, but should not prejudice 

the execution of an accurate investigation. In particular, if the structure has 

some minor damage, it is not said that it is practicable. This is true, in 

particular, if these minor damages are not arising as a result of a seismic 

event.  
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The primary purpose of the investigation of the damage is, therefore, to 

determine the practicability of a structure and it takes the necessary steps to 

recover a static (or retrofitting).  

 
Figure 1.7: Interventions on a Church in L’Aquila to prevent other damages [3]. 

The investigation of the damage must ensure the capacity or not of the 

existing structure to withstand future load levels in safety, including the 

seismic action (see an example in Figure 1.7). The current Italian technical 

standards [6], in particular, requires that, under the earthquake, the structure 

maintains the "performances". The seismic testing in combination with the 

current rule, then, is not only an "verification of strength" of the membering 

sections but it is a "performance verification". In agreement with the results 

offered by American standards, NTC 2008 [6] defines, in fact, several limit 

states in relation to the seismic performance that the structure must ensure in 

according to its importance. 

The Figure 1.8 contains some typical levels of damage defined by the "National 

Group for Defense from Earthquakes" of the CNR in the "Handbook of census 

card damage". The Figure 1.8 sets out the main types of cracks that can appear 

(usually not simultaneously) in a traditional masonry building after a seismic 

event. 
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Figure 1.8: Framework of possible cracks in masonry building [7]. 
 
 

Legend 
1 – Flexural cracks on door and windows beams; 
2 – Flexural horizontal cracks on the top of the walls; 
3 – Small cracks in the intersection between walls; 
4 – Important cracks in the intersection between walls; 
5 – 6 Diagonal shear cracks on piers and spandrels; 
7 – Flexural cracks in the elements for compression 
failure; 
8 – Failure for impact between more elements; 
9 – Failure in the connection between two walls; 
1v – 2v Cracks in the vaults; 
3v – Cracks in the bottom of the vaults. 
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1.2.1 Observed damage 

On existing structures it is, therefore, possible to use the previous criteria to 

make a classification of the level of damage. This is particularly useful when, 

after a seismic event, it is necessary to coordinate rescue operations and 

identify areas requiring evacuation, the buildings to shore up, the structures 

that are uninhabitable and evacuation, especially the work more appropriate 

to restore a level of optimal security. 

In the following there are some examples of classifications as a result of 

various earthquakes and reported from [8]. 

          
Figure 1.9: Examples 1 [8]. Figure 1.10: Example 2 [8]. 

In the Figure 1.9 there are some lesions in the vertical spandrel between the 

two apertures and connection to  transversal wall to the left (Damage Level A. 

Mild). The next case in Figure 1.10 shows vertical and diagonal lesion at the 

architrave with strengthening structure (Damage Level: A. Mild). 

In the next situations it’s possible to see more critical damages of the masonry 

structures after earthquake. 
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Figure 1.11: Examples 3 [8]. Figure 1.12: Example 4 [8]. 

In the Figure 1.11 it’s notable some vertical lesions along the vertical 

connection between two buildings (Damage Level: A. Mild). In the Figure 1.12 

there are an outside lead of an existing building in an old historic center 

(Damage Level: A. Mild). 
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Figure 1.13: Examples 5 [8]. Figure 1.14: Example 6 [8]. 

In Figure 1.13 some vertical lesions with separation from the adjacent 

building, horizontal and diagonal lesions at the floor level, partial collapse of 

the roof are present (Damage Level B - C . Medium - Severe). In the case of 

Figure 1.14 there are vertical and diagonal lesions almost the entire wall and 

lesion nearly horizontal at the level of the attic (Damage Level: C. Severe). 
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Figure 1.15: Example 7 [8]. 

 
Figure 1.16: Example 8 [8]. 

The Figure 1.15 shows a diagonal lesion in a masonry walls with dislocation at 

the base. (Damage Level: C - D. From serious to very serious). 

In the Figure 1.16, some lesions of the vertical masonry walls on the second 

floor connected to horizontal lesions can be seen. To the right there are the 

formation of a large wedge of masonry displaced of more than 10 cm. 

(Damage Level D. Very serious).  
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Figure 1.17: Examples 9 [8]. Figure 1.18: Example 10 [8]. 

In the Figure 1.17 a partial collapse of a sack masonry in correspondence of 

old openings for extended release of the external face can be seen. Moreover a 

severe diagonal lesion with dislocation of several centimeters it’s present in 

this case (Damage Level: D. Very serious). In the last case of Figure 1.18 there 

is a severe dislocation on the attic level floor beam for push of the roof 

(Damage Level: D. Very serious). 
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1.3 Technical solutions for strengthening 

Existing masonry structures often undergo structural upgrading operations 

aimed at possibility achieving one of the aimed at the following objectives [6]: 

- local repairing on isolated elements which are in need for an 

enhancement  of their capacity; 

- strengthening, intended at enhancing the global safety of structures up to 

relevant threshold values (see Figure 1.19); 

- retrofitting: aimed to achieving the security levels provided by the 

present rules. 

 
Figure 1.19: Strengthening of a vault with CFRP [3]. 

The different types of intervention on masonry structures can be classified, 

according to the structure that must be strengthened, in: 

1) interventions on vertical structures (walls, piers, spandrels); 

2) interventions on horizontal structures (floors, roofs, arches and vaults); 

3) interventions on the foundations. 

Often strengthening interventions on existing structures use innovative 

material like FRP (Fiber Reinforced Polymer) (see Figure 1.19).  
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Those elements allow to improve, i.e., the ultimate resistance in piers or in 

spandrels both in shear and in flexural. The FRP materials include the 

applications of plate elements, by paste, both in vertical direction (for improve 

the flexural resistance) and in horizontal direction (for improve the shear 

resistance). 

In the past, other strengthening techniques were used, in particular: 

1) injections of reinforced mortar (Figure 1.20); 

2) reinforced plaster (Figure 1.21); 

3) tie–beams and cables in steel (Figure 1.22); 

4) reinforced concrete beams on the top of the walls.  

 
Figure 1.20: Scheme of a diffused injections in a masonry wall [7]. 

 
Figure 1.21: Design of a reinforced plaster [7]. 
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Figure 1.22: Tie–beams for vertical wall in Ninfa – Latina [7]. 
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2. Codes for Masonry Structures 

2.1 Historical evolution 

In history many different technical documents, more or less sophisticated and 

scientifically–based have followed each other. Most of the seismic rules, on 

masonry structures but also on other kinds of structures, were made after the 

most destructive earthquakes occurred on the mostly of Italian territory. 

Of all this material, the structural designer should not make a passive study 

and accept the requirements as they are imposed but he should study with a 

critical spirit the policies that have followed each other in time. 

In particular, Structural Engineers should give priority to "his own technical 

and scientific knowledge" [9] and must apply it to works that are so designed 

as to meet the current codes provisions and, if possible, also the provisions of 

the previous rules which may be easily taken as the "rules of good practice". 

Technical standards are analysed in this study after introducing the following 

typologies: 

1) National Standards, which include both rules applicable throughout the 

Italian territory and local regulations issued by the regions or other 

administrative bodies;  

2) European Standards, issued by the CEN (European Committee for 

Standardization) and reviewed by UNI (Italian Organization for 

Unification) for the application on the Italian territory;  

3) International Standards, they are all the documents produced by 

organizations recognised as valid by the international scientific and 

technical point of view.  
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They include the standards and guidelines produced by FEMA [10][11] 

(Federal Emergency Management Agency) or ATC [12] (Applied Technology 

Council). 

In the following paragraphs, there are the most important historical legal 

documents issued since the last century and are shown below the current 

Italian and European norms.  

All the paragraphs set out some of the most significant requirements of the 

codes under consideration, both in terms of concepts and specific formulas. 

They also try to perform a critical comparison between the various documents 

that have occurred in time, making significant developments in the analysis of 

seismic and non-seismic masonry structures and the main differences. 

The first law and the first research in the field of construction in seismic zones 

dates back to 1627, after an earthquake occurred in Campania and struck the 

Benevento area (4500 victims).  

Thus, the "The Beneventan baroque System", that included a wooden skeleton 

with rectangular meshes, was introduced [9]. 

At first this method was applied only to the structures to rebuild after the 

collapse of the earthquake of 1627. After another earthquake in 1783 that 

struck Messina and Calabria (32000 victims), the previous construction 

system was improved by the engineer General Gian Battista Mori and also 

imposed on new buildings. 

In the following centuries, regulations and seismic studies in the field were 

refined and updated and many other technical documents were produced 

with almost regular basis after every major earthquake. 
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2.1.1 Royal Decree No. 193 of 18/04/1909 

This law [13] is the first modern technical standard in the field of earthquake 

resistant buildings. It was formulated in response to the earthquake occurred 

on 28/12/1908. In following years, they were also adopted other standards, 

including:  

- Royal Decree No. 1080 of 06/09/1912: "Obligatory technical and hygienic 

standards for repair, reconstruction and new construction of public and 

private buildings in the municipalities affected by the earthquake of 

28/12/1908 or other previous";  

- Royal Decree No. 665 of 09/05/1920;  

- Royal Decree No. 1705 of 16/11/1921;  

- Royal Decree No. 1475 of 27/10/1922. 

In these codes firstly the "good rules of building in seismic zone" have been 

defined. Limits were introduced especially in terms of height of buildings, 

which may not exceed 10 m, to ensure the requirement of monolithic. In 

particular, two types of walls can be used:  

1) traditional masonry: building designed by giving the carrying capacity to 

load bearing walls, which must be resistant to in–plane and out–plane 

and, therefore, must have a suitable thickness;  

2) reinforced masonry or animated: the wall is made by using a space frame 

structure with a reinforced concrete which involves the insertion of 

columns at intersections between masonry walls or beams or floor beams 

between the walls and floor systems. 

However, the law of 1912, greatly limited the application of the first type of 

masonry and focuses on new construction technique of the r.c.. In particular, 

the use of ordinary masonry buildings up to only two floors, 7 meters high and 

without basements was imposed. 

 

 



Gerardo Carpentieri  Matr. 06201/00179 

26 

2.1.2 Royal Decree No. 2229 of 16/11/1939  

One of the most important laws in the building and construction industry is 

certainly the Royal Decree No. 2229 of 1939 [14]. This legislation, referring 

explicitly to the reinforced concrete structures, were prepared by the National 

Research Council (CNR). 

This rule also introduces the obligatory to annex the executive project, drawn 

up and signed by an engineer or a registered architect. The Standard also 

requires that the document must contain all of the detailed design information 

useful in defining the project in its entirety and in the definition the state of 

stress. 

Afterwards, they are introduced the “minimum” performance required of the 

structural elements used, in particular the cement concrete and reinforcing 

bars. These mechanical properties must be verified and certified in recognised 

laboratories of structures. 

In this standard is also required that, before starting work, the complaint is 

the start of work, which must include the detailed design of the works to be 

realised. 

This document is also very important because it introduces essentially, the 

figures of the "project manager", the "design manager", the "builder" and the 

"tester". 

In subsequent articles they have been reported the requirements regarding 

the mechanical characteristics of the conglomerate, in particular the size of 

aggregate (gravel or crushed stone) and the quality of the binder. 

With regard, however, to the analysis of r.c. membering they are introduced 

the basic principles of "admissible stress method" which shall be applied using 

the principles of Science of Construction. 

The requirements contained in this legislation, during the years, have evolved 

into the present knowledge up to the current requirements of the Guidelines 

on the concrete produced by CNR. 
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2.1.3 Law No. 64 of 02/02/1974 

This law [15] is entitled "Provisions for buildings with special requirements 

for buildings in seismic zone” and is still current. The law in question was 

promulgated in response to the earthquake of Ancona in 1974. 

In practice, this law has been followed by several decrees, the first of which 

was the Ministerial Decree No. 39 of 03.03.1975 [16]. 

This standard introduces for the first time the concept of "seismic equivalent" 

to conduct the seismic analysis of structures by applying actions to the level of 

floor systems. The seismic action was regarded as "equivalent" to the effect 

produced by the displacement of the ground. 

This analysis, which is now known as Linear Static Analysis (ASL), provides 

for the use of response spectra in terms of pseudo spectral acceleration to 

define, at the natural period of vibration of the structure, the maximum 

acceleration possible. This acceleration is then used to define the action to be 

applied to the structure. 

For more complex buildings and with higher periods of vibration, this rule 

already introduced the dynamic analysis, which have evolved to the present 

day with the modal analysis.  

With regard to masonry buildings, the law and subsequent decrees required 

that the horizontal forces, assumed the hypothesis of rigid floor systems, shall 

be distributed among the various macro seismic resistant elements according 

to their vertical stiffness. 

In addition, the concepts of stiffness and mass centers were introduced, 

resulting in the definition of eccentricity.  

One of the greatest innovations was the introduction of the possibility of 

considering also the vertical seismic action, mainly due to the vibrating 

motion, that undertake not only the structures but also cantilevered 

structures and the horizontal members pushing with span than more 20 m. 
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Finally, this document includes the instructions on the operations of 

consolidation of crumbling structures, but without suggesting any of the 

methods in particular.  

Compared to earlier standards, the Law No. 64 of 1974 provided clear 

statements of the methods used for the analysis of structures in seismic areas. 

However, the earthquake is a ground motion imposed on the basis of the 

structure, or it is an event that affects the structure  "from the low" rather than 

"from the top" how assumed in the linear static analysis procedure. This 

assumption is acceptable when the most important is the first among all the 

modes of vibration. 

If this is the case, the seismic shear at the base of the structure can be shared 

between the different floor systems so similar to the first modal form, or in 

proportion to the masses of floor systems and, especially, marked by the 

height of the foundation. 
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2.1.4 Commentary No. 21745 of 30/07/1981  

2.1.4.1 General comments 

In general, masonry walls can be classified as follows:  

- squat walls: characteristics of mostly few floors buildings (low rapport 

height/thickness) and operating mainly to the shear. In these types of 

buildings there are continuous floor spandrels, between the various 

openings, very rigid and approximated to the rigid transverse. In this way, 

the masonry wall can then be modelled as a shear–type frame (Figure 

2.1a);  

- slim walls: characteristics especially for buildings with more than four 

floors. In these cases the collapse for the horizontal actions in the wall’s 

planes is usually at the first floor of the spandrels (shear failure with 

diagonal cracks) and then the masonry walls for the combined effect of 

bending and shear (Figure 2.1b). 

 
Figure 2.1: Collapse mechanisms [17]. 
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2.1.4.2 The POR method 

This Commentary [17] is widely known as it introduced the so–called POR 

method [18], which has been widely used for analysing masonry structures. 

It is often possible to model the walls as plan elastic frames subjected to 

horizontal actions at the levels of the floors. The POR method is, therefore, a 

simplified method for analysing the behaviour of a wall under actions in its 

plan. The key assumptions underlying this method are:  

1) infinitely rigid floor spandrels;  

2) crisis of the pier with diagonal cracks;  

3) negligible increases in normal stresses in piers because horizontal 

actions.  

The third hypothesis is acceptable for a low-rise buildings. Therefore, the POR 

method is allowed, according to the Ministerial Decree 16/01/1996 [19], only 

to buildings up to three floors.  

The technical document reports instructions taken as a reference for the 

repair and strengthening of masonry buildings damaged by the earthquake in 

1980 that struck the Irpinia. Some of the most important provisions of this 

point are reported in the following.  

The compressive shear strength of masonry can be identified using the  Table 

2.1. 
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Table 2.1: Masonry’s mechanical characteristics [17]. 

Type of masonry τk 
[t/m2] 

σk 
[t/m2] 

Non reinforced and non-damaged masonry 
Full bricks with “bastard mortar”. 12 300 

Standard block (with provisions of DM 
03/03/1975) (29x19; 19 cm) 

with “bastard mortar”. 
8 250 

Clay or concrete block with “bastard mortar”. 18 300 

Stone masonry (with brick layers the τk value can be 
incremented of the30%): 

a) stone in bed conditions; 
b) stone a few squat and well made; 

c) sandwich stone masonry in good conditions. 

 
 

2 
7 
4 

 
 

50 
200 
150 

Tuff elements of good quality. 10 250 
New masonry 

Full bricks with circular hole and cement mortar 
with Rm 1450 t/m2. 20 500 

Double holed bricks UNI ratio empty/full = 40% and 
cement mortar with Rm 1450 t/m2. 24 500 

Reinforced masonry 
Full bricks or squat stone with reinforced plaster of 

minimum 3 cm thickness. 18 500 

Injected stone, sandwich masonry with two 
reinforced concrete slabs of minimum 3 cm 

thickness. 

11 
 

11 

300 
 

300 
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The shear and axial compressive elastic moduli can be define as follows: 

 kG 1100 ; (2.1) 

 GE  6 . (2.2) 

Moreover, the seismic action can be evaluated by the relation: 

 iWCF   , (2.3) 
where: 

- C is the coefficient of seismic intensity, evaluated by the expression:  

 1000
2


SC

; 
(2.4)

 

- S is the degree of seismic activity;   

- β is the coefficient of the structure, usually equal to 4;   

- Wi is the total weight of the building at the time of the earthquake. 

In particular, three seismic zones were defined and the following values 

provided for S:  

- to earthquake zones with degree of seismic activity S = 12, it has: β C = 

0,40;  

- to earthquake zones with degree of seismic activity S = 9, it has: β C = 

0,28;   

- to earthquake zones with degree of seismic activity S = 6, it has: β C = 

0,16.  
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2.1.4.2.1 The wall 

In the Figure 2.2, a single masonry wall, subjected to action in its plane, is 

considered. For the Commentary [17], the element arrives to the collapse with 

diagonal shear lesions. 

 
Figure 2.2: Panel’s pseudo constitutive behaviour [17]. 

According to the Commentary in object, the ultimate shear action is 

determined by the relation: 

 
k

ku AT








5,1
1 0

, 
(2.5)

 
where:  

- A = t b is the area of the cross section of the masonry panel;  

- t, b and h are the panel’s dimension (see Figure 2.3); 

- τk is the shear strength;  

- σ0 is the normal stress at the base of the panel due to vertical loads. 

Finally, for the panel, there is an elastic plastic perfect relationship, 

characterised by the following equations: 

- elastic tract:   okT  for: δ < δ0; (2.6) 

- plastic tract:  uTT   for: δ0 < δ < δu. (2.7) 
where: 

- δ0 is the limit elastic displacement; 

- δu is the ultimate displacement, function of the panel’s ductility. 
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The two previous displacements are obtained from relations: 

 
0

0 k
Tu ;

 
(2.8)

 

 0 u .
 

(2.9)
 

µ is the ductility factor, defined in the Table 2.2.  
Table 2.2: Ductility factors  [17]. 

Type of masonry Ductility factor - µ 
Non reinforced stone masonry 1,5 

Injected stone masonry 1,5 
Existing brick masonry 1,5 

New brick masonry 2,0 
Stone or brick masonry with tie beam 2,0 

The stiffness of the linear elastic range is given by: 

 
20

2,1
11

1
2,1















b
h

E
Gh

AGk

,

 
(2.10) 

 
Figure 2.3: Panel’s geometry [17]. 
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2.1.4.2.2 The frame 

The general masonry panel (or frame) can be modelled like a frame-like 

structure that is made of different element, shortly exposed in the Figure 2.4.  

 
Figure 2.4: Modelling of a wall with POR method. 

Now consider a generic wall consisting of three piers and subject to action F in 

its plan (see Figure 2.5). This wall can be simulated as three separate masonry 

walls connected by penduli. All the building piers, for the congruence, will be 

subjected to the same lateral displacement δ. It’s possible to get the curve 

shear–total displacement of the wall from the notes of each septum. In a 

similar way, the system can be schematised with a shear–type frame, like the 

following one. 

 
Figure 2.5: Modelling of a structure facade [17]. 
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The elastic-perfectly plastic behaviour of every pier has done by the following 

relations: 

- elastic tract:  iioi kT  ,  for: δi < δ0,i; (2.11) 
- plastic tract:  Ti = Tu for: δ0,i < δi < δu,i. (2.12) 

With: i=1,2,3. 

The behaviour curve of the whole structure is obtained graphically as 

illustrated in following Figure 2.6 and is characterised by: 

- ultimate displacement equal to the minimum displacement between the 

ultimate minimum of all piers: 

  3,2,1,min, ;;min uuuu   ; (2.13) 
- elastic limit displacement coincides with the displacement to the elastic 

limit minimum between that of all piers: 

  3,02,01,0min,0 ;;min   . (2.14) 

 
Figure 2.6: Shear–displacement behaviour of the wall. 
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Assuming: δ0,1 < δ0,3 < δ0,2 the previous curve can be draw. The behaviour of 

the wall will then be described by the following relationships: 

- for: 0 < δ < δ0,1  it has:     3,02,01,0 kkkT  (2.15) 

- for: δ0,1 < δ < δ0,3   it has:     3,02,01, kkTT u  (2.16) 

- for: δ0,3 < δ < δ0,2  it has:     2,03,1, kTTT uu  (2.17) 

- for: δ0,2 < δ < δu,min   it has:  3,2,1, uuu TTTT   (2.18) 

Finally, from overall wall’s relations, it can see that:  

- the elastic tract ends when the elastic limit is reached, as lesser of all 

piers;  

- traits intermediates are elastic-plastic and have decreasing stiffness;  

- the plastic tract is limited by the ultimate displacement, as minimum of all 

piers. 
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2.1.5 Ministerial Decree 20/11/1987 

This law [20] contains provisions about the design, execution and testing of 

masonry structures in non–seismic zone. 

The topics that define the analysis procedures are the follows: 

- it is defined the type of mortars and the elements (natural or artificial) 

that constitute the walls, including all mechanical properties;  

- they are defined construction details to ensure box behavior of structure 

including the minimum thickness required of the masonry walls;  

- it defines a method of sizing simplified approach for small and simple 

masonry structures;  

- it is permitted to use both the method of verifying with admissible 

stresses and the limit state verification method;  

- it is prescribed verification of masonry walls both flexural and sliding 

shear failure. 

In the code in question they are then specified some important details of the 

methods adopted for the consolidation of the buildings (existing) in masonry. 

In practice, the consolidation is required when there is a change (with 

extensions, elevations, changes of use) of the existing structure. 

This standard, respect to previous that deal the seismic problem, mainly 

produces some helpful tips for planning with "law of the art" both new 

structures and to address the problems of existing structures. However, in the 

case of buildings in seismic zones, is necessary but not sufficient to verify the 

specifications contained in this standard but it must be taken to guard against 

an earthquake. 
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2.1.6 Ministerial Decree 16/01/1996 

For many years, these two documents [19][21] have been applied for the 

analysis of structures in seismic zones. The main importance of Ministerial 

Decree 1996 [19] derives by the possibility to use both admissible stresses 

method and Ultimate Limit States (ULS) method. Also, the concept of 

reinforced masonry structure was introduced. 

A major innovation of this decree compared to the previous is a new design of 

masonry structures. They were, in fact, changed the indications on the 

strength of materials and the minimum thickness of the wall. 

For smaller and simpler structures, this rule allows a much simpler design, 

which would exclude from the consideration and conduct a real seismic 

verification. It should, however, in these cases, follow a set of stringent 

structural details that often cannot be satisfied and would affect the 

architectural design and appearance of the building, which should aim to 

having a box–behaviour. 

The Commentary No. 65 [21] imposes to consider a q-factor equal to 2,0 for 

masonry buildings and new construction. This leads us to consider the 

analysis of seismic action, new walls, substantially equal to half of what it 

should be considered for existing masonry structures, of the same 

characteristics. 
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2.1.7 O.P.C.M. No. 3274 of 2003 and O.P.C.M. No. 3431 of 2005 

The Ordinance of the President of the Council of Ministers No. 3274 of 

20/03/2003 [22] is entitled "First elements on the general criteria for 

national seismic classification and technical standards for construction in 

seismic zones". Of particular importance is Annex 2 of this Ordinance that 

contains "Technical standards for the design, seismic evaluation and 

adaptation of buildings". 

This Ordinance, after a period of overlap with the previous Ministerial Decree 

1996 [19], however remained in force, was updated later and corrected by the 

next two years after Ordinance No. 3431.  

As for Annex 2 they should be considered, as regards the masonry, Chapter 8 

for new structures and Chapter 11 for existing structures. 

These laws have a special value because they apply both to new and existing 

structures that need modifications. In addition, these documents shall apply to 

all strategic buildings and to infrastructure projects, which are necessary for 

civil protection interventions during and after earthquakes. For all these 

buildings, Ordinance No. 3274, provided the evaluation of the level of 

vulnerability. 

This code is a revolution compared to previous seismic standards with regard 

to the analysis and verification of construction submitted to the earthquake. In 

fact, this document introduces the latest research results in the range of 

earthquake engineering. 

With regard to existing structures, however, the Ordinances distinguish two 

main types of intervention on the buildings in seismic areas:  

1) intervention for improvement: it involves performing of one or more 

works on the individual structural elements of the building with the 

purpose to achieve a higher degree of security but it doesn’t substantially 

change the overall behaviour;  
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2) seismic retrofitting intervention: it involves performing a series of 

operations   sufficient to make the building able to resist to seismic action. 

Regarding the seismic analysis, introduces the concept and the equations 

necessary to obtain the response spectrum in terms of acceleration, for the 

definition of seismic actions. 

In addition, similar to what is stipulated by the existing rules, important 

indications for definition of the q-factor that must be used to take into account 

the dissipative capacity of the structure were introduced.  

Ultimately, the seismic action applied to the generic floor is: 

   



jj

ii
hi Wz

WzFF , (2.19) 

where: 

- the seismic design base shear is:  

  
g

WTSF dh  1 ; (2.20) 

- Wi and Wj are the weights at the i and j floors;  

- zi and zj are the heights of floors i and j from foundations;  

- Sd(T1) is the ordinate of the design response spectrum at the fundamental 

period of vibration corresponding to the first modal form;  

- W is the weight of the combined seismic construction;  

- λ is a factor that depends by the number of plans and that is 0,85 up three 

floors and 1,00 over three floors. 
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2.2 Overview of the codes currently in force in Europe 

The regulatory framework currently existing include:  

1) "Approval of new technical regulations for Construction" – D.M. 

Infrastructure of the 14/01/2008 [6];  

2) Commentary No. 617 of 02/02/2009 of the Higher Council of Public Works 

– “Guidelines for application of new technical regulations for Construction” 

[23]. 

They are also in force:  

3) Law No. 1086 of the 1971 entitled “Rules for the discipline of works in 

normal and precompressed reinforced cement conglomerate, and metal 

structure” [24];  

4) Law No. 64 of the 1974 entitled “Measures for buildings with special 

requirements for seismic zones” [25]. 

For existing masonry structures they must also be applied documents 

produced by the CNR for the methods of application of FRP materials:  

5) “Guidelines for the design, execution and control of static works of 

consolidation through the use of fiber–reinforced composites” - CNR - DT 

200/2004 - Revision 2008 [26];  

6) “Guidelines for the design, implementation and testing of interventions for 

strengthening of reinforced concrete structure, r.c.p. and masonry using 

FRP” of the Higher Council of Public Works [27]. 

Finally, to structures of historical and cultural interest, they must be 

considered the requirements of:  

7) “Guidelines for seismic risk assessment and mitigation of cultural heritage 

with regard to technical standards for construction” made by the High 

Council of Public Works in 2006 [5]. 
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2.2.1 National codes: NTC 2008 and Commentary No. 617 

The NTC 2008 say that the load-bearing masonry construction must be 

designed to resist both vertical and horizontal actions. The topic of masonry is 

dealt by the standard as follows:  

- in paragraph 4.5: civil and industrial constructions;  

- in paragraph 7.8: design for seismic forces;  

- in paragraph 8.7.1: evaluation and design in presence of existing 

structures for seismic actions;  

- in paragraph 11.10: materials and products for structural use.  

2.2.1.1 Material properties 

The walls can be realised with the use of such artificial elements (bricks, Table 

2.3, or concrete, Table 2.4) or natural elements (stones). The brick elements 

are classified in according to the percentage of hole. 

Table 2.3: Classification of brick elements [6]. 

Elements Percentage of hole φ Area of the hole cross 
section f 

Full φ ≤ 15% f ≤ 9 cm2 

Semi full 15% < φ ≤ 45% f ≤ 12 cm2 
Holed 45% < φ ≤ 55% f ≤ 15 cm2 

Table 2.4: Classification of concrete elements [6]. 

Elements Percentage of hole φ Area of the hole cross section f 
A ≤ 900 cm2 A > 900 cm2 

Full φ ≤ 15% f ≤ 0,10 A f ≤ 0,15 A 
Semi full 15% < φ ≤ 45% f ≤ 0,10 A f ≤ 0,15 A 

Holed 45% < φ ≤ 55% f ≤ 0,10 A f ≤ 0,10 A 

In paragraph 4.5.4 they are defined the following minimum thicknesses:  

- masonry with full artificial resistant elements:   150 mm;  

- masonry with artificial and semi full resistant elements: 200 mm;  

- masonry with hollow resistant elements:   240 mm;  

- square stone masonry:      240 mm;  

- listed stone masonry:      400 mm;  
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- not square stone masonry:     500 mm. 

The conventional slenderness, useful for controlling second order effects, is 

defined as: 

 t
h0 , (2.21) 

where: 

- h0 is the free length of inflection;  

- t is the thickness of the wall. 

The design values of the compressive and shear strengths can be evaluated as 

follows:   

 
M

k
d

ff


 ; 
M

vk
vd

ff


 , (2.22) 

where: 

- fk is the characteristic compressive strength of masonry;  

- fvk is the characteristic shear strength of masonry, as estimated by the 

relationship:  

 nvkvk ff  4,00 ; (2.23) 

- fvk0 is the characteristic strength shear in the absence of axial force;  

- σn is the mean normal stress;  

- γM is the partial safety factor of the material (see Table 2.5).  

The document defines two classes of wall execution, 1 and 2. The first class is 

one that involves the use of better qualified staff and better controls on 

materials. 
Table 2.5: Values of γM coefficient [6]. 

Material Execution class 
1 2 

Masonry with resistant elements of Class I, mortar with 
guaranteed performance 2,0 2,5 

Masonry with resistant elements of Class I, mortar with 
prescribed performance 2,2 2,7 

Masonry with resistant elements of Class II, all types of 
mortar 2,5 3,0 
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For the verifications to ULS, the regulations defines a reduced unitary 

resistance of project referred to structural element like:  

 dridd ff , . (2.24) 

The reductive coefficient is defined in the Table 2.6 as a function of 

slenderness ratio and eccentricity m. 
Table 2.6: Φ coefficient values with the assumption of hinged joints [6]. 

Slenderness 
λ 

Eccentricity factor m = 6 e / t 

0,0 0,5 1,0 1,5 2,0 
0 1,00 0,74 0,59 0,44 0,33 
5 0,97 0,71 0,55 0,39 0,27 

10 0,86 0,61 0,45 0,27 0,16 
15 0,69 0,48 0,32 0,17 --- 
20 0,53 0,36 0,23 --- --- 

The free span of inflection can be:  

 hh  0 , (2.25) 

where: 

- ρ is a factor which takes into account the effectiveness of the constraint of 

orthogonal walls;  

- h is the height of the entire plan.  

The coefficient of eccentricity is defined as:  

 t
em  6 . (2.26) 

Where “e” is the total eccentricity due to eccentricity of vertical loads, the 

tolerances of execution and the horizontal actions.  

The eccentricity of the total vertical loads are: 

 



21

11
1 NN

dNes ; 








21

22
2 NN

dN
es ; (2.27) 
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where:  

- eS1 is the eccentricity of the resultant of the loads transmitted from the 

walls of the upper floors from the mid-plane of the wall to be tested;  

- eS2 is the eccentricity of the support reactions of the floors above it in the 

verification section;  

- N1 is the load transmitted from the wall above assumed centered to the 

wall;  

- N2 is the support reaction of the floors above the wall to be tested;  

- d1 is the eccentricity of N1 compared to the median plane of the wall to be 

tested;  

- d2 is the eccentricity of N2 compared to the median plane of the wall to be 

tested. 

The eccentricity due to the tolerance execution has assumed:   

 200
hea  .  (2.28) 

The eccentricity due to the horizontal actions, hypothesised perpendicular to 

the wall, is: 

 N
Me v

v  , (2.29) 

where:  

- Mv is the maximum bending moment due to the horizontal actions;  

- N is the normal stress in the verification section. 

The previous eccentricity must be combined to obtain:  

 as eee 1 ; veee 
2
1

1 ; (2.30) 

must result:   

 te  33,01 ; te  33,02 ; (2.31) 
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Technique norms [6][23] allows, for simple structures, a simplified 

verification to admissible stresses, by imposing:  

 γM = 4,2. (2.32) 
For simplified sizing of the structure, the following limitations must be 

respected:  

a) the walls must be continuous from foundation to the extremities;  

b) the inter-floor height must be less than 3,5 m;  

c) the maximum number of floors is three to ordinary masonry and four to  

reinforced masonry;  

d) the building's plan should be inscribed in a rectangle with a ratio between 

the shorter side and longer side not less than 1/3;  

e) slenderness of the wall never exceeding 12;  

f) variable load on the floors less than 3,00 kN/m2. 

The simplified verification is to investigate that it is:  

 
M

kf
A

N


 



65,0

. (2.33) 

where:  

- N is the vertical load at the base of each floor of the building which is the 

sum of permanent and variable loads (assuming γg = γq = 1);  

- A is the total area of load-bearing walls on the same floor. 

In the case of walls under horizontal actions, simplified verification can only 

be done if, in addition to the above conditions, they are fulfilled the following 

requirements:  

a) regular structure in plan and elevation;  

b) along the two directions in plan must be at least two walls with an overall 

length, exclusive of openings, each not less than 50% of the size of the 

building in the same direction. In addition, the distance between the two 

masonry walls must be greater than 75% of the size of the building at 
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orthogonal direction to the walls. Finally, 75% of the vertical loads must 

be carried by earthquake resistant walls;  

c) in each direction they must be present earthquake resistant walls at 

intervals not exceeding 7 m, which may be increased to 9 m for reinforced 

masonry;  

d) for each floor, the ratio of the area of cross section of the walls and the 

gross floor area not less than indicated in the Table 2.7. 
Table 2.7: Area resistant walls in each orthogonal direction to simple constructions [6]. 

Pick ground 
acceleration S ag ≤0,07g ≤0,1g ≤0,15g ≤0,20g ≤0,25g ≤0,30g ≤0,35g ≤0,40g ≤0,45g ≤0,4725g Type of 

structure 
Number 
of floor 

Ordinary 
masonry 

1 3,5 % 3,5 % 4,0 % 4,5 % 5,0 % 5,5 % 6,0 % 6,0 % 6,0 % 6,5 % 
2 4,0 % 4,0 % 4,5 % 5,0 % 5,5 % 6,0 % 6,5 % 6,5 % 6,5 % 7,0 % 
3 4,5 % 4,5 % 5,0 % 5,5 % 6,0 % 6,5 % 7,0 %    

Reinforced 
masonry 

1 2,5 % 3,0 % 3,0 % 3,0 % 3,5 % 3,5 % 4,0 % 4,0 % 4,5 % 4,5 % 
2 3,0 % 3,5 % 3,5 % 3,5 % 4,0 % 4,0 % 4,5 % 5,0 % 5,0 % 5,0 % 
3 3,5 % 4,0 % 4,0 % 4,0 % 4,5 % 5,0 % 5,5 % 5,5 % 6,0 % 6,0 % 
4 4,0 % 4,5 % 4,5 % 5,0 % 5,5 % 5,5 % 6,0 % 6,0 % 6,5 % 6,5 % 

The geometry of the earthquake resistant walls, as indicated in paragraph 

7.8.1.4 of the NTC 2008 [6], must respect the requirements listed in the Table 

2.8, where:  

- h’ is the maximum height of the openings adjacent to the wall;  

- l is the length of the wall.  

It must be for each floor: 

 
M

kf
A
N


  25,0 . (2.34) 

Table 2.8: Geometric requirements of earthquake resistant walls [6]. 
Type of structures tmin (λ=h0/t)max (l/h’)min 

Ordinary masonry, made with stone squat 
elements 300 mm 10 0,5 

Ordinary masonry, made with artificial elements 240 mm 12 0,4 
Reinforced masonry, made with artificial 

elements 240 mm 15 Whatever 

Ordinary masonry, made with stone squat 
elements, in sites in zone 3 and 4 240 mm 12 0,3 

Masonry made with artificial semi full elements, 
in sites in zone 4 200 mm 20 0,3 

Masonry made with artificial full elements, in 
sites in zone 4 150 mm 20 0,3 
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The legislation [6], in paragraph 7.8.2, defines the safety verifications to be 

used to masonry structures. In the next part they are shown the relationships 

that permit to define:  

- ultimate moment;  

- shear strength.  

In paragraph 11.10, they are defined the checks of the mechanical properties 

of the walls and the resistance of the masonry constituents, as well as various 

types of stone available.  

The Table 2.9 shows the types of mortar and their strengths. 
Table 2.9: Classes of mortars with guaranteed performance [6]. 

Class M 2,5 M 5 M 10 M 15 M 20 M d 
Compressive 

strength 
[N/mm2] 

2,5 5,0 10,0 15,0 20,0 d 

d is a compressive strength greater than 25 N/mm2 declared by the producer. 

The types of mortars with prescribed composition are shown in the following 

Table 2.10. 
Table 2.10: Classes of mortars with prescribed composition [6]. 

Class Type of 
mortar 

Compositions 

Cement Air lime Hydraulic 
lime Sand Pozzolana 

M 2,5 Hydraulic - - 1 3 - 
M 2,5 Pozzolana - 1 - - 3 
M 2,5 Bastard 1 - 2 9 - 
M 5 Bastard 1 - 1 5 - 
M 8 Cement 2 - 1 8 - 

M 12 Cement 1 - - 3 - 

The characteristic compressive strength of masonry can be determined using 

the following equation having known experimental results: 

 skff mk  , (2.35) 

where:  

- fm is the mean resistance;  

- s is the mean quadratic discard;  

- k is a coefficient that depends on the number of samples (Table 2.11).  
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Table 2.11: Coefficient k values [6]. 
n 6 8 10 12 20 
k 2,33 2,19 2,10 2,05 1,93 

The law defines the characteristic resistance values depending by the type of 

mortar and characteristic resistance of the used element (see Table 2.12 and 

Table 2.13). 
Table 2.12: fk values for masonry with artificial element full and semi-full (in N/mm2) [6]. 

Characteristic 
compressive 

strength fbk of 
the element 

N/mm2 

Type of mortar 

M 15 M 10 M 5 M 2,5 

2,0 1,2 1,2 1,2 1,2 
3,0 2,2 2,2 2,2 2,0 
5,0 3,5 3,4 3,3 3,0 
7,5 5,0 4,5 4,1 3,5 

10,0 6,2 5,3 4,7 4,1 
15,0 8,2 6,7 6,0 5,1 
20,0 9,7 8,0 7,0 6,1 
30,0 12,0 10,0 8,6 7,2 
40,0 14,3 12,0 10,4 - 

Table 2.13: fk values for masonry with natural element full and semi-full (in N/mm2) [6]. 

Characteristic 
compressive 

strength fbk of 
the element 

N/mm2 

Type of mortar 

M 15 M 10 M 5 M 2,5 

2,0 1,0 1,0 1,0 1,0 
3,0 2,2 2,2 2,2 2,0 
5,0 3,5 3,4 3,3 3,0 
7,5 5,0 4,5 4,1 3,5 

10,0 6,2 5,3 4,7 4,1 
15,0 8,2 6,7 6,0 5,1 
20,0 9,7 8,0 7,0 6,1 
30,0 12,0 10,0 8,6 7,2 
40,0 14,3 12,0 10,4 - 

The characteristic compressive strength in natural elements is obtained from 

the mean resistance:  

 bmbk ff  7,0 . (2.36) 

 



Chapter 2                                                                  Codes for Masonry Structures 

 51 

The characteristic shear strength in the absence of normal stress can be 

obtained from the mean using the following relationship:  

 vmvk ff  7,00 . (2.37) 

The characteristic shear strength above can be obtained from the Table 2.14, 

depending on the type of element resistance and the resistance of the mortar. 
Table 2.14: Characteristic shear resistance in absence of normal stress fvk0 (in N/mm2) [6]. 

Type of element 

Characteristic 
compressive 

strength fbk of the 
element [N/mm2] 

Class of mortar fvk0 [N/mm2] 

Full or semi full 
brick 

fbk > 15 M 10 ≤ M ≤ M 20 0,30 
7,5 ≤ fbk ≤ 15 M 5 ≤ M ≤ M 10 0,20 

fbk ≤ 7,5 M 2,5 ≤ M ≤ M 5 0,10 
Concrete, calcium 

silicate, autoclaved 
cement, natural 

squat stone 

fbk > 15 M 10 ≤ M ≤ M 20 0,20 
7,5 ≤ fbk ≤ 15 M 5 ≤ M ≤ M 10 0,15 

fbk ≤ 7,5 M 2,5 ≤ M ≤ M 5 0,10 

Finally, the secant modulus of elasticity is: 

 kfE  1000 , (2.38) 

and the shear secant modulus of elasticity is: 

 EG  4,0 . (2.39) 
With regard to the existing masonry buildings, Commentary No. 617 [23] 

defines, in the Appendix C8A, the levels of knowledges (LC) reported in the 

Table 2.15. These levels are obtained through detailed investigations and tests 

on samples of material. With increasing of the quality of these investigations 

the level of knowledge rises (from first to third) and decreases the value of the 

confidence factor (FC) which is proportional to the uncertainties of the 

analysis. 

It is possible distinguish the following situations:  

1) LC1 as "limited level of knowledge";  

2) LC2 as "adequate level of knowledge";  

3) LC3 as "accurate level of knowledge". 
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By knowing the level of knowledge (defined in Table 2.15) it’s possible to use 

the Table 2.16 and Table 2.17 for to obtain the strength, elastic modulus and 

other properties for existing masonry structures. 
Table 2.15: Levels of knowledges [6]. 

Level of 
knowledges Geometry Structural 

detail Material properties Analysis 
methods FC 

LC1 

Investigation 
about masonry, 

vaults, floors, 
staircases, load, 

foundation, 
crack pattern. 

Limited on 
site 

verification 

Limited on site 
investigation. 

Strength: minimal 
value of Tab. C8A2.1. 

Elastic modulus: mean 
value of Tab. C8A2.1. 

All 

1,35 

LC2 

Complete 
on site 

verification 

Extensive on site 
investigation. 

Strength: mean value 
of Tab. C8A2.1. 

Elastic modulus: mean 
value of the tests or of 

the Tab. C8A2.1. 

1,20 

LC3 

Exhaustive on site 
investigation. 

CASE A 
Strength: mean of the  

value of the test. 
Elastic modulus: mean 
value of the tests or of 

the Tab. C8A2.1. 
CASE B 

Strength: if mean 
experimental value is 

between mean value in 
Tab. C8A.2.1, mean 

value in Tab. C8A.2.1; is 
mean experimental 
value greater than 

maximum extreme of 
the Tab. C8A.2.1, this 

one; if mean 
experimental value less 

than C8A2.1, mean 
experimental value. 
Elastic modulus: like 

LC3 CASE A. 
CASE C 

Strength: if mean 
experimental value is 

between mean value in 
Tab. C8A.2.1 or greater, 

mean value in Tab. 
C8A.2.1; if mean 

experimental value less 
than C8A2.1, mean 
experimental value. 
Elastic modulus: like 

LC3 CASE A. 
 

1,00 
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Table 2.16: Reference values of mechanical parameters [23]. 

Type of masonry 

fm 
[N/cm2] 

τ0 
[N/cm2] 

E 
[N/mm2] 

G 
[N/mm2] W 

[kN/m3] Min - 
Max 

Min - 
Max Min - Max Min - Max 

Irregular stone 
masonry 

100 2,0 690 230 19 180 3,2 1050 350 
Few squat stone 

masonry 
200 3,5 1020 340 20 300 5,1 1440 480 

Regular stone masonry 260 5,6 1500 500 21 380 7,4 1980 660 
Soft stone masonry 

(tuff, limestone) 
140 2,8 900 300 16 240 4,2 1260 420 

Squat stone masonry 600 9,0 2400 780 22 800 12,0 3200 940 
Masonry with full brick 

and lime mortar 
240 6,0 1200 400 18 400 9,2 1800 600 

Masonry with semi full 
brick and cement 

mortar 

500 24 3500 875 
15 800 32 5600 1400 

Masonry with semi full 
brick 

400 30,0 3600 1080 12 600 40,0 5400 1620 

Masonry with semi full 
brick without vertical 

mortar joints 

300 10,0 2700 810 
11 

400 13,0 3600 1080 

Masonry with concrete 
elements 

150 9,5 1200 300 12 200 12,5 1600 400 
Masonry with semi full 

concrete elements 
300 18,0 2400 600 14 440 24,0 3520 880 

Legend 
Reference values of mechanical parameters (minimum and maximum) and mean 
specific weight for different types of masonry, refer to the following conditions: low 
mortar characteristics, lack of complaints (listature), vestments simply linked or bad 
combined, unconsolidated masonry, textures (in the case of regular elements) in a 
art’s rule manner.  
fm = mean masonry compressive strength; 
τ0 =  mean masonry shear strength; 
E = modulus of elasticity mean value; 
G = modulus of elasticity tangential mean value; 
W = mean weight per unit volume of masonry. 

 



Gerardo Carpentieri  Matr. 06201/00179 

54 

Table 2.17: Correction factors of the mechanical parameters [23]. 

Type of 
masonry 

Go
od

 m
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r 
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s o
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r  
 

< 
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In
je
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f m
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ta
r 

Re
in

fo
rc

ed
 p

la
st

er
 

Irregular 
stone 

masonry 
1,5 - 

 1,3 1,5 0,9 2,0 2,5 

Few squat 
stone 

masonry 
1,4 1,2 1,2 1,5 0,8 1,7 2,0 

Regular 
stone 

masonry 
1,3 - 1,1 1,3 0,8 1,5 1,5 

Soft stone 
masonry 

(tuff, 
limestone) 

1,5 1,5 - 1,5 0,9 1,7 2,0 

Squat 
stone 

masonry 
1,2 1,2 - 1,2 0,7 1,2 1,2 

Masonry 
with full 
brick and 

lime 
mortar 

1,5 1,5 - 1,3 0,7 1,5 1,5 

Legend 

Correction factors of the mechanical parameters to be applied in the presence of: good 

or very good mortar characteristics, thin joints, recourse or listature, systematic 

transversal connections, especially bad and/or large internal core; consolidation by 

injection of mortar, plaster, consolidation with reinforced plaster. 
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The level of knowledge acquired is a function of: knowledge of structural 

geometry, knowledge of construction details, knowledge of materials.  

The knowledge of structural geometry consists on the investigation of the size 

of all elements: walls, floors, roofs, stairs, vaults and foundations’ building and 

in the design and interpretation of crack pattern. 

The knowledge of structural details derived from the study of:  

- quality of the links between vertical walls;  

- quality of connections between floors and walls and presence of any floor 

beams;  

- existence of architraves with good load–bearing capacity;  

- existence of pushing elements and any elimination elements of the push;  

- existence of elements with heightened vulnerability;  

- types of masonry. 

The knowledge of materials requires: the measurement of the mechanical 

characteristics of mortar joints and elements (stone or gravel), the 

investigation of texture and staggering of the joints, the investigation of the 

presence of any transversal links.  

For details of construction are distinguished:  

- limited on-site verifications: operations are based on visual investigation 

of a sample, with removal of the plaster, essays on the walls and the 

detachable.; 

- extensive and comprehensive on–site verifications: investigations are 

based on visual investigation, with removal of the plaster, stripped of 

detachable between vertical walls and between walls and floors. The 

examination is extended to the entire building. 

For the investigation of materials they can be distinguished:  

- limited on-site investigations: they are information accessible through the 

data on the existing technical literature at the time of construction and 
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using the above Tables 2.15 – 2.17. Also in this case it must remove the 

plaster and to find the elements used and the strength of the mortar; 

- extensive on-site investigations: they compared to previous 

investigations, but they also required a strength test on any type of 

existing masonry. In addition but not as a substitute for destructive tests 

they can be used the non-destructive investigation techniques; 

- exhaustive on-site investigations: they compared to previous operations, 

the experimental tests are carried out in order to evaluate the mechanical 

properties of masonry. Experimental tests are conducted on-site or in the 

laboratory on undisturbed samples. 
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2.2.1.2 Seismic actions 

According to the NTC 2008 [6], the limit states that can be considered in 

earthquake combination are:  

1) Operativity Limit State (OLS);  

2) Damage Limit State (DLS);  

3) Preservation of Life Limit State (PLS);  

4) Collapse Prevention Limit State (CLS).  

The first two limit states are Service Limit States (SLS, Table 2.18), the other 

ones are the Ultimate Limit States (ULS, Table 2.19). For each of the previous 

limit states they are defined the seismic action (in the form of spectrum of 

demand) and performance that the structure must ensure. 
Table 2.18: Performance of the Service Limit State [6]. 

Operativity Limit State (OLS) 
A result of the earthquake, the building as a whole, including the structural elements, 

non-structural elements, relevant equipment to its function does not suffer 
significant damage and interruption of use. 

Damage Limit State (DLS) 
A result of the earthquake, the building as a whole, including the structural elements, 
non-structural elements, equipment relevant to its function, is damaged should not 

put users at risk and not compromise significantly the capacity of strength and 
rigidity against vertical and horizontal actions, but remaining immediately usable 

after the interruption of use of some equipment. 

In any case, to carry out interventions on existing structures, a good level in 

advanced knowledge (LC) must be reached. 

The investigation of the damage levels (see Table 2.20) consists mainly in the 

observation and understanding of lesions and collapse that may affect, in most 

cases:  

1) load bearing and no load-bearing walls (internal divisions and external);  

2) vaults and arcs;  

3) floors and horizontal elements of any type;  

4) roofs. 
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Table 2.19: Performance of the Ultimate Limit State [6]. 
Preservation of Live Limit State 

A result of the earthquake the building suffered cracks and collapse of nonstructural 
components and plant components and significant structural damage which is 

associated with a significant loss of stiffness against horizontal actions, the 
construction preserves a part of the resistance and stiffness for vertical actions and a 

safety margin against collapse for horizontal seismic actions. 
Collapse Prevention Limit State 

Following the earthquake, the building suffered serious cracks and collapses of 
nonstructural components and plant and serious damage of structural components, 
the building still has a margin of safety measures vertical actions and a small safety 

margin against collapse due to horizontal actions. 

Both for the choice of method of analysis and for to evaluate the q-factor 

adopted, the regularity of the structure must be checked. The following Table 

2.21 summarises, for a generic structure under consideration, the conditions 

of regularity in plan and height. 
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Table 2.20: Damage levels [6]. 
Damage level Masonry walls Vaults Floors Ceiling 

A - Small Each cracks, 1 
mm thickness. 

Cracks until of 2 
mm thickness 

without tie 
beams; until of 1 

mm thickness 
with tie beams. 

Cracks parallel 
to the beams 

and with 1 mm 
thickness. 

Fall of a few roof 
tiles on the 

border. 

B - Middle 

Cracks of types 
1 – 2 – 3, until 4 
mm thickness. 
Cracks of types 
4 – 5 – 6, until 2 
mm thickness. 

Cracks of types 
1v and 2v, until 
4 mm thickness, 

without tie 
beams and until 
2 mm  with tie 
beams. Cracks 

1v – 3v without 
tie beams. 

Cracks like A 
case until 4 mm. 
Damages of the 
wood floors in 

secondary 
structures.  

Damages of the 
secondary 
structures. 

Displacement of 
the main beams 

until 4 mm. 

C – Serious 

Cracks of types 
1 – 2 – 3, until 8 
mm thickness. 
Cracks of types 
4 – 5 – 6, until 4 
mm thickness. 

Damages of 
types 7 – 8 – 9. 

Cracks of types 
1v and 2v, until 
8 mm thickness, 

without tie 
beams and until 
4 mm  with tie 
beams. Several 
cracks 1v – 3v 

without tie 
beams. 

Several 
separation 

between floors 
and walls. 

Damages like 8 
but more big. 

Some collapse in 
the elements of 
the secondary 

structures.  

Damages of the 
secondary 
structures. 

Displacement of 
the main beams 

until 40 mm. 

D – Very serious More damages 
of the case C. 

More damages 
of the case C. 

Some collapse of 
the main 
structure. 

General collapse 
in the elements 

of the secondary 
structures. 

Several 
separation 

between floors 
and walls. 

Some partial 
collapse. Fall of 
the main beams. 
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Table 2.21: Regularity requirements [6]. 
REGOLARITY IN PLACE OF THE STRUCTURE 

The plant configuration is compact and approximately symmetric 
about two orthogonal directions, in relation to the distribution of mass 

and stiffness. 
YES or NOT 

The relationship between the sides of a rectangle that is inscribed 
on the building is less than 4. YES or NOT 

No returns or projections of any size exceeds 25% of the total size 
of the building in the corresponding direction. YES or NOT 

The floors can be considered infinitely rigid in their plan respect 
to the vertical elements and sufficiently resistant. YES or NOT 

REGOLARITY IN HEIGTH OF THE STRUCTURE 
All vertical resistant systems (such as frames and walls) extend 

throughout the height of the building. YES or NOT 

Mass and stiffness remain constant or change gradually, without 
abrupt changes from base to top of the building (the mass change from 

floor to floor does not exceed 25%, the stiffness is not reduced from one 
floor to the overlying more than 30 % and does not increase more than 
10%) for stiffness can be considered regular in high the structures with 
walls or cores in concrete or masonry and cores of constant section in 

the height or with upwind steel frames, which has given at least 50% of 
the seismic base. 

YES or NOT 

In frame structures designed in CD "B" the relationship between 
effective resistance and strength required by the analysis is not 

significantly different for different floors (the ratio between the actual 
and the required resistance, defined at a generic floor must not differ 

more than 20% determined from the analogous relationship to another 
floor) can be done except the last floor of frame structures of at least 

three floors. 

YES or NOT 

Any constrictions of the horizontal section of the construction 
occur in a gradual way from one floor to the next, respecting the 

following restrictions: for each return floor does not exceed 30% of the 
size corresponding to the first floor, or 20% of the size corresponding to 

the horizontal elements immediately below. One exception is the last 
floor of at least four floors of buildings for which there are no limitations 

to shrinkage. 

YES or NOT 
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The analysis of seismic forces is done using the requirements of the NTC 2008. 

The code [6] for buildings with characteristics of regularity in plan and height, 

in view of an equivalent static analysis, allows us to consider a distribution of 

seismic forces along the height congruent with the first modal shape of the 

building. For this reason, the seismic actions to be applied at each level can be 

obtained using the following relationship: 

  




j
jj

ii
hhi Wz

WzFF , 
(2.40) 

where: 

- Fh is the design base shear, amounting to: 

  
g

WTSF dh  1 ; (2.41) 

- zi and zj are the quotas of the masses i and j (floor) from the plane of the 

foundations;  

- Sd(T1) is the ordinate of the response spectrum of design;  

- T1 is the period of vibration of the structure;  

- λ is a coefficient equal to 0,85 for structures up to three floors and where 

T1 < Tc and equal to 1,00 for the other cases;  

- W is the weight of the structure in seismic combination;  

- g is the acceleration of gravity. 

The natural period of vibration can be obtained with the simplified relation: 

 
4/3

11 HCT  . (2.42) 

For regular structures in height, it can take: 

 kR = 1. (2.43) 
For ordinary masonry buildings with two or more existing floors it is (Par 

C8.7.1.2, see Table 2.22):  

 5,1
1



u . (2.44) 
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Table 2.22: Values of q0 for different structural types [6]. 
Structural typology q0 

Ordinary masonry buildings 2,0 αu / α1 
Reinforced masonry buildings 2,5 αu / α1 

Reinforced masonry buildings designed 
with GR 3,0 αu / α1 

The q–factor is, finally: 

 0qkq R  . (2.45) 

The structure factor will allow to pass from the elastic response spectrum to 

the design response spectrum, and it has used for the analysis of spectral 

acceleration needed for the analysis of the seismic action. 

The seismic analysis according to NTC 2008 may be conducted from the 

knowledge of the geographical coordinates of the structure to be analysed, for 

example: 

Latitude 40,9228 ° 
Longitude 14,7837 ° 

Interpolating the values in Table 1, Appendix B of the NTC 2008, the following 

parameters of seismic hazard reported in Table 2.23 can be obtained. 
Table 2.23: Seismic hazard parameters  [6]. 

Limit state 
TR ag F0 T*c 

[years] [g] [] [s] 

SLS 
Operativity 30 0,053 2,343 0,282 

Damage 50 0,069 2,320 0,310 

ULS 
Life safety 475 0,193 2,372 0,367 

Collapse prevention 975 0,249 2,434 0,377 

The nominal life of the structure (Table 2.24) is an index of the number of 

years that the structure can support without the need of extraordinary 

maintenance work. Based on this value, the return period of seismic action can 

be calculated. 
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Table 2.24: Nominal life for different types of building  [6]. 
Types of buildings Nominal life VN   [years] 

1 Provisional buildings ≤ 10 
2 Ordinary buildings ≥ 50 
3 Big buildings ≥ 100 

Table 2.25: Values of the use coefficient  [6]. 
Use class I II III IV 

Use factor CU 0,7 1,0 1,5 2,0 

The reference period is: 

 NuR VcV  . (2.46) 

Where CU is the use coefficient reported in Table 2.25. 

The probability of overcoming during the reference period is indicated by PVR 

and indicates what is the probability that in a number of years equal to the 

return period the real seismic event is more than the design seismic event (see 

Table 2.26). 
Table 2.26: Probability of overcoming at vary limit state considered [6]. 

Limit state 
PVR: Probability of 
overcoming in the 

reference period VR 

Service Limit State (SLS) OLS 81 % 
DLS 63 % 

Ultimate Limit State (ULS) PLS 10 % 
CLS 5 % 

The return period of the seismic action is considered: 

  VR

R
R P

VT



1log

. (2.47) 

The category of subsoil (show in Table 2.27 and Table 2.28) and the 

stratigraphy (see Table 2.29) express the geological characteristics of the 

place where there is the building to verify. Those factors (shows in Table 2.30 

and Table 2.31) are very important because the geological nature of the soil 

and subsoil can affect the propagation and possible amplification of seismic 

waves in the transition from the hypocenter to the epicenter. 
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Table 2.27: Category of subsoil [6]. 
Category Description 

A Emerging rock masses or very rigid soil 
B Fine grain consisting soil 
C Fine grain mildly consisting soil 
D Fine grain low consisting soil 
E Type C or D soils with thickness not more than 20 m 

Table 2.28: Additional category of subsoil [6]. 
Category Description 

S1 Soils with VS30 < 100 m/s 
S2 Soils susceptible of liquefaction 

Table 2.29: Topographical category [6]. 
Category Characteristics of the topographical surface 

T1 Surface with inclination i ≤ 15° 
T2 Surface with inclination i > 15° 
T3 Surface with inclination 15° ≤ i ≤ 30° 
T4 Surface with inclination i > 30° 

The equations of the traits of the elastic response spectrum are: 

-   




















BB
ge T

T
FT

TFSaTS 11

0
0 

  for 0 < T < TB; (2.48) 

-   0FSaTS ge    for TB < T < TC; (2.49) 

-   







T
T

FSaTS C
ge 0  for TC < T < TD; (2.50) 

-   





 
 20 T

TT
FSaTS DC

ge   for TD < T, (2.51) 

where: 

- TS SSS  ;  (2.52) 

-   55,0
5
10








;
  (2.53) 

- *
CCC TCT  ;  (2.54) 

- 
3
C

B
TT 

;
  (2.55) 
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- 6,10,4 
g

a
T g

D
.
  (2.56) 

Table 2.30: Expressions of SS and CC  [6]. 
Subsoil category SS CC 

A 1,00 1,00 

B 20,140,040,100,1 0 
g

a
F g    20,0*10,1


 CT  

C 50,160,070,100,1 0 
g

a
F g    33,0*05,1


 CT  

D 80,150,140,200,1 0 
g

a
F g    50,0*25,1


 CT  

E 60,110,100,200,1 0 
g

a
F g    40,0*15,1


 CT  

Table 2.31: Values of the topographic amplification coefficient [6]. 
Topographic category Position ST 

T1 - 1,0 
T2 On the top of a mountain 1,2 
T3 On the top of a mountain 1,2 
T4 On the top of a mountain 1,4 

To summarise, in the example:  

 2,1 TS SSS . (2.57) 

The damping coefficient is usually assumed:  

 ξ = 5 %, (2.58) 
then:  

   1
5
10







 . (2.59) 

The period of start of the tract with constant speed is: 

 sTCT CCC 493,0*  . (2.60) 

The period of start of the trait with constant acceleration is:  

 3
C

B
TT  . (2.61) 
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The period of start of the trait with constant displacement is:  

 6,10,4 
g
a

T g
D . (2.62) 

Using the equations of the traits  previously set out,  the  following elastic 

response spectrum can be obtained (see Figure 2.7). 

 
Figure 2.7: Typical Elastic response spectrum. 

The design spectrum is obtained by scaling the elastic response spectrum with 

the q-factor, which replaces the coefficient η in the previous reports (see 

Figure 2.8). 
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Figure 2.8: Typical Design spectrum. 

The ordinate of the design spectrum, taken at the period T1, is used for the 

analysis of the seismic action, provided that it is better than: 

   ][0386,02,0min1 gaTS gd 
.
 (2.63) 

2.2.1.2.1 Capacity models and ULS checks. Bending strength 

The code [6] imposes to use the following expression,  assuming  a  not linear 

distribution  of  compression,  for  calculating  the  ultimate bending  moment 

of the wall panel: 

 










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u f
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85,0
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2
1 02

0


 , (2.64) 

where:  

- 
tL

P


0   is the normal stress averaged over the section;  

- P is the vertical force perpendicular to the section in question;  

- t is the thickness of the wall;  

- L is the length of the wall;  

- fd is the design compressive strength. 
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All of this amounts to arguing for the maximum eccentricity of a load P always 

less than L/2:  

 








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

.

 (2.65) 

The previous condition is often not checked on the upper floors of the 

structure due tallow values  of vertical load P. In such cases a reinforced 

masonry with steel bars or FRP must be used. 

2.2.1.2.2 Shear strength 

The ultimate sliding shear in wall plan is evaluated using the following 

equation given in code [6]:  

 vdRd fDtV  ' , (2.66) 

where: 

- 





  eLD

2
3' is the length of the wall assuming a triangular distribution 

of compressive stresses; 

- 
Ed

Ed

N
Me  is the eccentricity of center of pressure;  

- Nvkvd ff   0  analysis of the shear resistance of the masonry;  

- µ = 0,4 is the coefficient of friction;  

- 
'Dt

N Ed
N 
 is the average vertical stress on the compressed cross section. 
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The previous relationship provides a collapse of the panel to slide, and it is 

mostly used for new structures. For existing structures, however, the 

Commentary No. 617 [23] allows the possibility of  evaluating a shear  

resistant very similar to the POR method [18],  which  provides  a failure  for  

diagonal cracking: 

 
d

d
Rd b

tLV
,0

0,0

5,1
1

5,1








 , (2.67) 

where:  

- L and t are the width and thickness of the wall;  

- b = h/L  is the ratio between the height and the width of the panel;  

- τ0,d = fvk0  is the shear strength of masonry;  

- σ0 = NEd/(Lt) is the normal stress averaged over the whole panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gerardo Carpentieri  Matr. 06201/00179 

70 

2.2.1.3 Cultural heritage: Guidelines BBCC – DPC 

These guidelines [5] deal with the assessment and mitigation the seismic risk 

faced by all those buildings which have a significant cultural interest. Italy, in 

particular, is full of such structures, which include for example, churches, 

monuments, historic and vintage buildings. 

The protection of this heritage goes beyond the simple life safety objective but 

is aimed at preventing damage and protecting the building itself.  

As proposed by these guidelines, in accordance with what is expected from the 

NTC 2008 [6], the following problems must be faced:  

1) knowledge the building: to determine the mechanical properties of 

materials and geometric properties of the elements;  

2) use of the most appropriate models for assessing the safety against 

seismic actions with the use of a static or dynamic analysis of linear or 

nonlinear types;  

3) adoption of criteria needed for improving the seismic behaviour of the 

structure. 

As regards the definition of seismic actions that must be considered, they are 

defined three different categories of importance of the buildings, for which an 

appropriate value of the probability of exceedance of the seismic action in the 

standard period of 50 years, with reference to ULS and DLS analysis, can be 

chosen in Table 2.32 or Table 2.33. 
Table 2.32: Probability of exceedance in 50 years of seismic action (P) and factors of importance 

for the ULS verification γf of cultural heritage protection [5]. 
Use 

category 
Important category 

Limited Middle Elevated 
 P γf P γf P γf 

Occasional 
or not used 40 % 0,50 25 % 0,65 17 % 0,8 

Frequent 25 % 0,65 17 % 0,80 10 % 1,0 
Very 

frequent 17 % 0,80 10 % 1,00 6,5 % 1,2 
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Table 2.33: Probability of exceedance in 50 years of seismic action (P) and factors of importance 
for the DLS verification γf of cultural heritage protection [5]. 

Use 
category 

Important category 
Limited Middle Elevated 

 P γf P γf P γf 
Occasional 
or not used 90 % 0,50 80 % 0,65 65 % 0,8 

Frequent 80 % 0,65 65 % 0,80 50 % 1,0 
Very 

frequent 65 % 0,80 50 % 1,00 40 % 1,2 

It is interesting to note that, for example, for the analysis of these types of 

structures must be used a factor of confidence equal to:  

 



4,1

1
k

ckC FF . (2.68) 
 

Where the confidence factors (Fck) depend on the degree of detail of the 

investigation, as shown in the Table 2.34. 
Table 2.34: Definition of levels of depth investigations on different aspects of knowledge and 

confidence for partial factors [5]. 

Investigation on 
the geometry 

Investigation of the 
detail 

Mechanical 
propertied of the 

material 

Soil and 
foundations 

Complete 
FC1 = 0,05 

Limited 
FC2 = 0,12 

Use of disposable 
data 

FC3 = 0,12 

Limited 
FC4 = 0,06 

Complete with 
crack pattern 

FC1 = 0,00 

Extensive 
FC2 = 0,06 

Extensive 
FC3 = 0,06 

Use of disposable 
data 

FC4 = 0,03 
Complete 
FC2 = 0,00 

Complete 
FC3 = 0,00 

Complete 
FC4 = 0,00 

Based on the purpose to preserve the cultural heritage, the guidelines define 

three Levels of Evaluation (LV) corresponding to the different needs of seismic 

analysis:  

1) valuation of the vulnerability of cultural heritage on a national scale;  

2) design of seismic retrofitting on individual elements of construction;  

3) design of seismic upgrading involving the behaviour of the whole product.  

The following Table 2.35 shows the relationships between the finalities of the 

analysis, the levels of valuation and the analysis model. 
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Table 2.35: Summary for the evaluation of seismic capacity [5]. 
Analysis of the seismic hazard of the cultural heritage 

Scope of the analysis Minimal level of 
evaluation Analysis model 

Evaluation of the seismic 
safety factor in national 

scale 
LV1 Simplified models 

Evaluation of the seismic 
safety of the single 

building 
LV3 Complete local 

mechanisms of collapse 

Design of intervention of seismic improve 

Scope of the analysis Minimal level of 
evaluation Analysis model 

Local intervention on 
limited part of the 

building 
LV2 

Local mechanisms of 
collapse on a part of the 

building 
Intervention on the whole 

building LV3 Complete local 
mechanisms of collapse 

The majority of cultural heritages are built of masonry and for this reason, the 

guidelines in question involves the execution of tests of strength and stability 

of masonry walls not only in–plane but also out–plan action. In particular, all 

the possible collapse mechanisms, especially for church facades, must be 

considered. Some of these are listed in the following Figure 2.9. 
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Figure 2.9: Abacus of some mechanisms of collapse of the churches [5]. 
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2.2.2 European rules: Eurocodes 

The Eurocodes are the standards produced by CEN (European Committee for 

Standardization) with the purpose of proposing a reference approval to 

structural design throughout the European Union. 

Since the 1970 a series of harmonised technical rules has been issue for design 

of buildings under construction. Initially the purpose of Eurocodes was to be 

an alternative to national regulations, which eventually would have  been 

substituted. 

The Eurocodes programme consists of provides nine categories of documents, 

from the base of the design of structures to the design of aluminum structures. 

Regarding the field of masonry, the interested Eurocodes are:  

- Eurocode 6: it is dedicated to masonry carrying structures, reinforced or 

not and in natural or artificial elements;  

- Eurocode 8: it is dedicated to the seismic aspect and connects to the other 

Eurocode depending on the material used. 

In particular, the Eurocode 6 is composed of the following documents:  

- UNI EN 1996-1-1:2006 Part 1-1: General rules for reinforced and 

unreinforced masonry structures [28];  

- UNI EN 1996-1-2:2005 Part 1-2: General rules – Structural design for fire;  

- UNI EN 1996-2:2006 Part 2: Design considerations, selection of materials 

and execution of masonry [29]; 

- UNI EN 1996-3:2006 Part 3: Simplified calculation methods for 

unreinforced masonry structures [30]. 

Eurocode 8, instead, contains useful information on the masonry in the 

following documents: 

- UNI EN 1998-1:2005 Part 1: General rules, seismic actions and rules for 

buildings [31]; 

- UNI EN 1998-3:2005 Part 3: Assessments and retrofitting of buildings 

[32]. 
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2.2.2.1 EuroCode 6 

Eurocode 6 Part 1-1 [28] sets out general criteria for the design of either 

unreinforced and reinforced masonry buildings. 

Design approach is always inspired to the Limit States method, which became 

consists in comparing the value of the design action and the design resistance: 

 Ed < Rd. (2.69) 
In a very general way, the stresses are obtained from the characteristic values 

and amplifying them with the appropriate factors. As regards, however, the 

design strengths, these can be obtained from the characteristic values reduced 

with the appropriate partial factors (see Table 2.36). 
Table 2.36: Recommended values of γM  [28].   

Material 
γM 

Class 
1 2 3 4 5 

 Masonry made with 1,5 1,7 2,0 2,2 2,5 
A Units of Category I, designed mortara 1,7 2,0 2,2 2,5 2,7 
B Units of Category I, prescribed mortarb 2,0 2,2 2,5 2,7 3,0 
C Units of Category II, any mortara-b-c 1,7 2,0 2,2 2,5 2,7 
D Anchorage of reinforcing steel 1,15 
E Reinforcing steel and prestressed steel 1,7 2,0 2,2 2,5 2,7 
F Ancillary componentsc-d 1,5 to 2,5 
G Lintels according to EN 845-2      
a a Requirements for designed mortars are given in EN 998-2 and EN 1996-2. 
b b Requirements for prescribed mortars are given in EN 998-2 and EN 1996-2. 
c c Declared values are mean values. 
d d Damp proof courses are assumed to be covered by masonry γM. 
e e When the coefficient of variation for Category II units is not greater than 25%. 

For the masonry material, the Eurocode 6 defines the geometrical 

requirements reported in Table 2.37 and the strengths for infills shows in the 

next Table 2.38.  
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Table 2.37: Geometrical requirements for Grouping of Masonry Units [28]. 

 

Material and limits for Masonry Units 

Group 1 (all 
materials) 

 Group 2 Group 3 Group 4 

Units Vertical holes Horizontal 
holes 

Volume of 
all holes (% 
of the gross 

number) 

≤ 25 

Clay > 25; ≤ 55 ≥ 25; ≤ 70 > 25; ≤ 70 
Calcium 
silicate > 25; ≤ 55 not used not used 

concreteb > 25; ≤ 60 > 25; ≤ 70 > 25; ≤ 50 

Volume of 
any hole (% 
of the gross 

volume) 

≤ 12,5 

Clay 

each of 
multiple 
holes ≤ 2        
gripholes 

up to a total 
of 12,5 

each of 
multiple 
holes ≤ 2        
gripholes 

up to a total 
of 12,5 

each of 
multiple 

holes ≤ 30 

Calcium 
silicate 

each of 
multiple 

holes ≤ 15        
gripholes 

up to a total 
of 30 

not used not used 

concreteb 

each of 
multiple 

holes ≤ 30        
gripholes 

up to a total 
of 30 

each of 
multiple 

holes ≤ 30        
gripholes 

up to a total 
of 30 

each of 
multiple 

holes ≤ 25 

Declared 
values of 

thickness of 
webs and 

shells (mm) 

No 
requirement 

 web shell web shell web shell 
Clay ≥ 5 ≥ 8 ≥ 3 ≥ 6 ≥ 5 ≥ 6 

Calcium 
silicate ≥ 5 ≥ 10 not used not used 

concreteb ≥ 15 ≥ 18 ≥ 15 ≥ 15 ≥ 20 ≥ 20 
Declared 
value of 

combined 
thicknessa 

of webs and 
shells (% of 
the overall 

width) 

No 
requirement 

Clay ≥ 16 ≥ 12 ≥ 12 
Calcium 
silicate ≥ 20 not used not used 

concreteb ≥ 18 ≥ 15 ≥ 45 

a The combined thickness is the thickness of the webs and shells, measured 
horizontally in the relevant direction. The check is to be seen as a qualification test 
and need only be repeated in the case of principal changes to the design dimensions of 
units. 
b In the case of conical holes, or cellular holes, use the mean value of the thickness of 
the webs and the shells. 
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Table 2.38: Characteristic strengths of concrete infills [28]. 
Strength class of concrete C12/15 C16/20 C20/25 C25/30, or stronger 

fck [N/mm2] 12 16 20 25 
fcvk [N/mm2] 0,27 0,33 0,39 0,45 

The characteristic compressive strength of unreinforced masonry is:  

 
mbk ffKf  , (2.70) 

where: 

- fk is the characteristic compressive strength of the masonry in N/mm2;  

- K is a constant that can be determined in accordance with the Table 2.39;  

- α and β are constants;  

- fb is the normalised average compressive strength of masonry elements in 

N/mm2;  

- fm is the compressive strength of ordinary mortar, in N/mm2. 
Table 2.39: Values of K for use with general purpose, thin layer and lightweight mortars [28]. 

Masonry Unit General 
purpose 
mortar 

Thin layer 
mortar 

(bed joint ≥ 
0,5 mm and 

≤ 3 mm) 

Lightweight mortar of 
density 

 
600 ≤ ρd 

≤ 800 
kg/m3 

800 ≤ ρd 
≤ 1300 
kg/m3 

Clay 

Group 1 0,55 0,75 0,30 0,40 
Group 2 0,45 0,70 0,25 0,30 
Group 3 0,35 0,50 0,20 0,25 
Group 4 0,35 0,35 0,20 0,25 

Calcium 
silicate 

Group 1 0,55 0,80 ◊ ◊ 
Group 2 0,45 0,65 ◊ ◊ 

Aggregate 
concrete 

Group 1 0,55 0,80 0,45 0,45 
Group 2 0,45 0,65 0,45 0,45 
Group 3 0,40 0,50 ◊ ◊ 
Group 4 0,35 ◊ ◊ ◊ 

Autoclaved 
Aerated 
Concrete 

Group 1 0,55 0,80 0,45 0,45 

Manufactured 
Stone Group 1 0,45 0,75 ◊ ◊ 

Dimensioned 
Natural Stone Group 1 0,45 ◊ ◊ ◊ 

◊ Combination of mortar/unit not normally used, so no value given. 
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The characteristic shear resistance of walls is:  

 dvkvk ff  4,00 , (2.71) 

where: 

- fvk0 is the initial shear strength under zero axial load (see Table 2.40);  

- σd is the design compressive stress perpendicular to the shear in 

membering level into consideration. 

The Eurocode 6 imposes that fvk should be lower than 0,065 fb or fvlt, where 

- fb is the resistance to compression of the standard elements of the 

masonry, for the direction of load application;  

- fvlt is the limit value of fvk. 
Table 2.40: Values of the initial shear strength of masonry [28]. 

Masonry units 

fvk0 [N/mm2] 

General purpose mortar of 
the Strength Class given 

Thin layer 
mortar (bed 

joint ≥ 0,5 mm 
and ≤ 3 mm) 

Lightweight 
mortar 

Clay 
M10 – M20 0,30 

0,30 0,15 M2,5 – M9 0,20 
M1 – M2 0,10 

Calcium silicate 
M10 – M20 0,20 

0,40 0,15 M2,5 – M9 0,15 
M1 – M2 0,10 

Aggregate 
concrete M10 – M20 0,20 

0,30 0,15 

Autoclaved 
Aerated Concrete M2,5 – M9 0,15 

Manufactured 
stone and 

Dimensioned 
natural stone 

M1 – M2 0,10 

Following the definition of the mechanical characteristics of masonry, 

Eurocode proceeds to set out the criteria to be used for verification both 

Ultimate Limit States and Service Limit States. Finally, the detail rules are also 

defined, including the minimum thickness of the walls, the minimum size of 

the reinforcements, the connections between the various wall elements. 
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2.2.2.2 EuroCode 8 

The code [31] provides requirements for buildings and civil engineering 

projects in seismic zones and provides the rules for the representation of 

seismic actions and their combination with other actions, with the objective to 

ensure that in case of earthquake human lives are protected, the damages are 

limited and the major structures of civil protection remain operational. 

Among all the existing codes on earthquake engineering, Eurocode 8 is 

certainly the most advanced ones. With regard to the seismic action, this can 

be calculated in a very similar way to the already shown in previous 

paragraphs 2.2.1.2. Firstly the Eurocode 8 defines the ground types in the 

Table 2.41.  
Table 2.41: Ground types [31]. 

Ground 
type Description of stratigraphic profile 

Parameters 

vs,30 [m/s] 
NSPT 

(blows 
30cm) 

cu 
[kPa] 

A 
Rock or other rock-like geological formation, 

including at most 5 m of weaker material at the 
surface. 

> 800 - - 

B 

Deposits of very dense sand, gravel, or very stiff 
clay, at least several tens of metres in thickness, 

characterised by a gradual increase of mechanical 
properties with depth. 

360 – 800 > 50 > 250 

C 
Deep deposits of dense or medium dense sand, 
gravel or stiff clay with thickness from several 

tens to many hundreds of metres. 
180 – 360 15 – 50 70 – 

250 

D 
Deposits of loose-to-medium cohesionless soil 

(with or without some soft cohesive layers), or of 
predominantly soft-to-firm cohesive soil. 

< 180 < 15 < 70 

E 

A soil profile consisting of a surface alluvium layer 
with vs, values of type C or D and thickness 

varying between about 5 m and 20 m, underlain 
by stiffer material with vs > 800 m/s. 

   

S1 
Deposits consisting, or containing a layer at least 

10 m thick, or soft clays/silts with a high plasticity 
index (PI > 40) and high water content. 

< 100 
(indicative) - 10 – 

20 

S2 
Deposits of liquefiable soils, of sensitive clays, or 

any other soil profile not included in types A – E or 
S1 
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In particular, the elastic spectral acceleration can be defined as a function of 

return period. In contrast to the Italian standard NTC 2008 [6], the standard 

[31] fixed:  

- the values of the vibration periods of the different tracts of the spectrum 

by knowing the category of subsoil (see Table 2.42 and Table 2.43);  

- the value of spectral amplification factor, F0, equal 2,5. 
Table 2.42: Values of parameters of the elastic response spectrum recommended of Type 1 [31]. 
Ground type S TB(s) TC(s) TD(s) 

A 1,0 0,15 0,4 2,0 
B 1,2 0,15 0,5 2,0 
C 1,15 0,20 0,6 2,0 
D 1,35 0,20 0,8 2,0 
E 1,4 0,15 0,5 2,0 

Table 2.43: Values of parameters of the elastic response spectrum recommended of Type 2 [31]. 
Ground type S TB(s) TC(s) TD(s) 

A 1,0 0,05 0,25 1,2 
B 1,35 0,05 0,25 1,2 
C 1,5 0,10 0,25 1,2 
D 1,8 0,10 0,30 1,2 
E 1,6 0,05 0,25 1,2 

With the previous parameters it’s possible to obtain different spectra that 

have a shape exposed in the Figure 2.10. 

 
Figure 2.10: Recommended Type 1 elastic spectrum for soil types A through E (5% damping) [31]. 
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The analysis method used for seismic analysis and verification of the structure 

depends explicitly on the regularity characteristics of the structure, as 

summarised in the Table 2.44. Compared to NTC 2008 [6], this represents a 

significant step forward that clarifies the differences between regular and 

irregular structures. 
Table 2.44: Effects of structural regularity on analysis and seismic design [31]. 

Regularity Allowed Simplification Behaviour 
factor 

Plan Elevation Model Linear-elastic 
Analysis 

(for linear 
analysis) 

Yes Yes Planar Lateral forcea Reference 
value 

Yes No Planar Modal Decreased 
value 

No Yes Spatialb Lateral forcea Reference 
value 

No No Spatial Modal Decreased 
value 

a If the condition of 4.3.3.2.1(2)a is also met. 
b Under the specific condition given in 4.3.3.1(8) a separate planar model may be used 
in each horizontal direction, in accordance with 4.3.3.1(8). 

The simplest analysis method is the one that includes the application of a 

lateral horizontal forces distributed appropriately among the various vertical 

earthquake resistant element: 

    mTSF db 1 , (2.72) 

where: 

- Sd(T1) is the ordinate of the design spectrum for the period T1;  

- T1 is the fundamental period of vibration of the building for a lateral 

motion in the considered direction;  

- m is the total mass of the building above the foundation or on the top of a 

rigid base;  

- λ is a correction factor, equal to 0,85 if T1 < Tc2 and if the building has 

more than two plan or otherwise is equal to 1,00. 

The fundamental period is equal to:  

 4/3
1 HCT t  , (2.73) 
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where: 

- 
c

t A
C 075,0

  for structures with r.c. walls;  

- Ct = 0,085 for steel spatial frame with rigid joints;  

- Ct = 0,075 for concrete or steel spatial frames and rigid joints frames with 

eccentric upwind;  

- Ct = 0,05 for all other structures;  

- H is the building height in meters;  

- 



























2

2,0
H
lAA wi

ic  is the total effective area of shear walls on 

the first floor of the building, in m2;  

- Ai is the effective cross section area of the wall on the first floor of the 

building, in m2;  

- lwi is the length of the i-th shear wall at the first floor in the direction 

parallel to the applied forces, in m, with the ratio lwi/H not greater than 

0,9. 

With regard to masonry buildings, these are specifically dealt with in Chapter 

9 of Part 1-1. In particular, the mechanical properties of the constituents of the 

wall and the factors for seismic analyses are defined. Among these factors, the 

most important is certainly the q-factor to be used, which is specified in the 

Table 2.45. 
Table 2.45: Types of construction and the upper limit of the q–factor  [31]. 

Type of construction Behaviour factor 
q 

Unreinforced masonry in accordance with EN 1996 alone 
(recommended for low seismicity cases). 1,5 

Unreinforced masonry in accordance with EN 1998-1. 1,5 – 2,5 
Confined masonry 2,0 – 3,0 

Reinforced masonry 2,5 – 3,0 
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The main mechanism of earthquake resistant masonry buildings is made up of 

walls, which are sensitive to actions in their plan. These walls, for new 

buildings, should verify the following requirements of Table 2.46. 
Table 2.46: Geometrical requirements recommended for shear walls [31]. 

Masonry type tef,min [mm] (hef/tef)max (l/h)min 
Unreinforced, with 
natural stone units. 350 9 0,5 

Unreinforced, with 
any other type of 

units 
240 12 0,4 

Unreinforced, with 
any other type of 

units, in cases of low 
seismicity 

170 15 0,35 

Confined masonry 240 15 0,3 
Reinforced masonry 240 15 No restriction 
Symbols used have the following meaning: 

tef thickness of the wall (see EN 1996-1-1:2004); 
hef effective height of the wall (see EN 1996-1-1:2004); 
h greater height of the openings adjacent to the wall; 
l length of the wall. 

Finally, with regard to simple masonry buildings, simplified analysis are 

allowed, as prescribed in Eurocode 6. However, several limitations should be 

considered including those listed in the Table 2.47 with reference to the 

maximum number of floors. 

With regard, instead, the existing masonry buildings, Part 3 of Eurocode 8 [32] 

must be used. This range is the most common for masonry structures, which 

are less made today, and for those that already exist, they are almost always 

outside the current parameters of verification. 

The rule [32] provides criteria to assess the seismic performance of the single 

structures of existing buildings. The approach to select the necessary 

corrective measures and establish criteria for the design of adaptation 

measures is described. 
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Table 2.47: Number of floor recommended to be granted above the ground level and minimum 
area of shear walls for "simple masonry buildings" [31]. 

Acceleration at site ag S ≤ 0,07 k g ≤ 0,10 k g ≤ 0,15 k g ≤ 0,20 k g 

Type of 
construction 

Number of 
storey (n)** 

Minimum sum of cross-sections areas of horizontal 
shear walls in each dimension, as percentage of the 

total floor area per storey (pA,min) 

Unreinforced 
masonry 

1 2,0 % 2,0 % 3,5 % n/a 
2 2,0 % 2,5 % 5,0 % n/a 
3 3,0 % 5,0 % n/a n/a 
4 5,0 % n/a* n/a n/a 

Confined 
masonry 

2 2,0 % 2,5 % 3,0 % 3,5 % 
3 2,0 % 3,0 % 4,0 % n/a 
4 4,0 % 5,0 % n/a n/a 
5 6,0 % n/a n/a n/a 

Reinforced 
masonry 

2 2,0 % 2,0 % 2,0 % 3,5 % 
3 2,0 % 2,0 % 3,0 % 5,0 % 
4 3,0 % 4,0 % 5,0 % n/a 
5 4,0 % 5,0 % n/a n/a 

* n/a means “not acceptable”. 
** Roof  space above full storeys is not included in the number of storeys. 

The third part of Eurocode 8, therefore, first defines the methods for seismic 

analysis of existing structures and then provides specific rules for masonry 

structures in Appendix C. 

As regards the methods of analysis they are affected by greater uncertainties 

of analysis from those used for new structures because they are not fully 

known material and geometry, which features will be determined by a 

detailed investigation. Depending on the type of investigations, a confidence 

factor useful to calculate the design values of resistance (see Table 2.48) can 

be defined. 
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Table 2.48: Knowledge levels and corresponding methods of analysis (LF: Lateral Force procedure, 
MRS: Modal Response Spectrum analysis) and confidence factors (CF) [31]. 

Knowledge 
Level Geometry Details Materials Analysis CF 

KL1 

From 
original 
outline 

construction 
drawings 

with sample 
visual 

survey or 
from full 
survey 

Simulated 
design in 

accordance 
with relevant 
practice and 
from limited 

in-situ 
inspection 

Default values 
in accordance 

with standards 
of the time of 
construction 

and from 
limited in-situ 

testing 

LF-MRS CFKL1 

KL2 

From 
incomplete 

original 
detailed 

construction 
drawings with 
limited in-situ 
inspection or 

from extended 
in-situ 

inspection 

From original 
design 

specifications 
with limited 

in-situ testing 
or from 

extended in-
situ testing 

All CFKL2 

KL3 

From original 
detailed 

construction 
drawings with 
limited in-situ 
inspection or 

from 
comprehensive 

in-situ 
inspection 

From original 
test reports 
with limited 

in-situ testing 
or from 

comprehensive 
in-situ testing 

All CFKL3 

NOTE: The values ascribed to the confidence factors to be used in a country may be 
found in its National Annex. The recommended values are CFKL1 = 1,35; CFKL2 = 1,20; 
CFKL3 = 1,00. 

The material characteristics are defined according to the method of analysis 

adopted in Table 2.49, which can be:  

1) linear analysis;  

2) nonlinear analysis;  

3) q-factor approach. 
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Table 2.49: Values of material properties and criteria for analysis and safety verification [31]. 

 Linear Model (LM) Nonlinear Model q-factor approach 
Demand Capacity Demand Capacity Demand Capacity 

Type of 
element or 
mechanism 

(e/m) 

Ductile 

Acceptability of Linear 
Model (for checking of ρi = 

Di/Ci; 
Verification (if LM 

accepted): 

From 
analysis. 

Use mean 
values of 

properties 
in model. 

In terms 
of 

strength. 
Use mean 
values of 

properties 
divided by 
CF and by 

partial 
factor. 

From 
analysis. 

In terms 
of 

strength. 
Use mean 
values of 

properties 
divided by 
CF and by 

partial 
factor. 

From 
analysis. 

In terms of 
deformation. 

Use mean 
values of 

properties 
divided by 

CF. 

Brittle 

Verifications (if LM 
accepted): 

In terms 
of 

strength. 
Use mean 
values of 

properties 
divided by 
CF and by 

partial 
factor. 

In 
accordance 

with the 
relevant 

Section of 
EN 1998-
1:2004. 

If ρi ≤ 1: 
from 

analysis. 
 

If ρi > 1: 
from 

equilibrium 
with 

strength of 
ductile 

e/m. Use 
mean 

values of 
properties 
multiplied 

by CF. 

In terms of 
strength. 
Use mean 
values of 

properties 
divided by 

CF and 
partial 
factor. 

With regard to the masonry walls, the Eurocode is used to calculate the basic 

resistant shears, that change to reflect the limit state considered, both with 

reference to the case of the walls subject to bending and the walls subject to 

shear.  

The corresponding shear resistance of walls subject to bending is taken to be 

equal to:  

  df H
NDV 




 15,11
2 0

, (2.74) 

where: 

- D is the dimension in the horizontal plane of the wall;  

- N is the normal action;  

- H0 is the distance between the section where is attained the capacity to 

bending and the contraflexure point;  
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- 
d

d ftD
N


  is the no-dimensional normal stress;  

- t is the thickness of the wall;  

- 
m

m
d CF

ff   is the design compressive strength of masonry;  

- fm is the average compressive strength of masonry;  

- CFm is the confidence factor of the wall. 

The shear capacity of unreinforced masonry, however, is equal to:  

 tDfV vdf  ' , (2.75) 

where: 

- mvmvd f
tD

Nff 


 065,0
'

4,00  is the shear strength of masonry in the 

presence of normal stress;  

- fvm0 is the shear strength of masonry in the absence of normal stress;  

- D' is the size of the compressed part of the section. 
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3. Analysis of masonry walls under in-plane 

earthquake induced actions 

3.1 Failure modes of masonry panels subject to actions 

in their plane 

This section outlines the key capacity models for simulate the relevant failure 

modes of masonry walls. The following notation is used for dimensions of a 

masonry panel:  

- wall thickness: t;  

- length: L;  

- height: h;  

- geometric slenderness of the wall in the plan:  

 
L
h

 . (3.1) 

A series of a simple capacity models is formulated by considering a generic 

masonry wall (see Figure 3.1), subjected to various restraint conditions, two 

vertical load N and one horizontal force V.  

According to experimental observations [33] et al., the following aspects 

control the failure modes in masonry walls:  

- geometrical parameters and particularly the slenderness;  

- stress state: the vertical load has a significant effect on shear strength of 

masonry;  

- mechanical properties: particularly bed component of the wall can 

influence the mode of failure (such as mortar). 
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Figure 3.1: Load pattern and size of the masonry panel. 

Thus, the following failure modes can occur in a masonry wall:  

1) diagonal cracking: occur a shear failure with the formation of diagonal 

cracking, often along the beds of mortar but not always;  

2) sliding shear: this kind of failure occurs when there is sliding along a 

horizontal bed of mortar, often at the base of the panel. This failure mode 

is typical for panels with low vertical loads, low shear strength of the 

mortar and low coefficient of friction (µ) between the base and wall; 

3) flexural failure: masonry panels very high tend to fail in flexure which 

involves the opening of horizontal cracks at the base on the tensile side 

and a crushing of the compressed side. 

The described types of failure are schematically represented in the following 

Figure 3.2. 
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Figure 3.2: Possible collapse mechanisms [34].  

Only diagonal shear collapse mechanism was considered in POR method [18] 

when the method was originally conceived. The other two mechanisms, 

however, were subsequently studied and it was found that their behaviours 

were very dependent by the extent of vertical load. Therefore, it is necessary 

to distinguish between the case of partially compressed section (low values of 

the normal load) from the case entirely compressed section (high values of the 

normal load). 

The relationships of ultimate shear strength (Vu) of the panel subject to a 

constant normal action N are presented for each of the failure modes. They are 

derived by using the following assumptions for stresses in walls:  

- mean shear stress: 
tL

V


 ; (3.2) 

- mean normal stress: 
tL

N


 .
 

(3.3) 
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3.1.1 Diagonal shear failure 

This failure mode is characterised by the formation of diagonal cracks in the 

panel. Because the panel has a rectangular cross section, shear stresses acting 

in the cross section have a quadratic distribution with the maximum at the 

central fiber (see Figure 3.3). 

 
Figure 3.3: Evolution of tangential stresses in the section. 

The presence of normal and shear stresses result in cracking which initiates 

from the central zone, where shear stresses attain their maximum value. The 

mean vertical stresses are assumed equal to: 

 
tL

N


 . (3.4) 

The scheme of the building panel is that of a beam fixed at the base and fixed 

to rotate at the top [35].  
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The ultimate limit state involves the formation of diagonal cracks 

perpendicular to the principal tensile direction that spread quickly from the 

center of the wall to the corners.  

 
Figure 3.4: Stress state of a central element and the corresponding Mohr circle. 

Consider a generic infinitesimal element at the center of the panel described in 

Figure 3.4, which is subject to a normal stress, and shear stress equal to: 

 
tL

V


 . (3.5) 

Assuming this, four points (P1, …, P4) of the Mohr circle, the center and the 

radius can be obtained. The center has coordinates: 

 
2


cx ; (3.6) 

 0cy .
 

(3.7) 

The radius is: 

 2
2

2








r . (3.8) 
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The principal stresses ση and σξ are of particular importance for the study of 

collapse mechanisms: 

 2
2

22
 






 ; (3.9) 

 2
2

22
  






 .

 
(3.10) 

At the center of the reference cross section, the maximum shear stress can be 

calculated using Jourawski formula: 

 
 

   











 5,1
2
3

12/
8/'

3

2

max tL
V

tLt
LtV

tI
SV

G

, (3.11) 

where: 

- S' is the moment of the part of the section above the central fiber or the 

half section in relation to the center of gravity: 

 
842

'
2LtLLtS 







  ; (3.12) 

- IG is the moment of inertia of the entire section in relation to the center of 

gravity axis: 

 
12

3LtIG


 . (3.13) 

Thus, the maximum principal stresses can be determined as follows: 

  2
2

max, 5,1
22

 





 ; (3.14) 

  2
2

max, 5,1
22

  





 . 

(3.15) 
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3.1.1.1 Italian codes [6][23] 

The ultimate condition is obtained when the principal tensile stress reaches 

the maximum value of the resistance, equal to 1,5 fvk0 (where fvk0 is shear 

strength under zero vertical load), the ultimate shear stresses associated with 

this failure are (τu): 

   0
2

2

5,15,1
22 vku f





  . (3.16) 

Rearranging the above equation (3.16) the following expression can be 

obtained: 

  2
2

0 5,1
2

5,1
2 uvkf 







 , (3.17) 

then: 

  2
22

0 5,1
2

5,1
2 uvkf 














  , (3.18) 

After simple mathematical transformations, the following expression can be 

written: 

    2

0

2
0 5,1

5,1
15,1 u

vk
vk f

f 











 , (3.19) 

and the mean ultimate shear stress is: 

 
0

0 5,1
1

vk
vku f

f



 , (3.20) 

From the definition of ultimate shear stress given in (3.20, the ultimate shear 

associated with this mode of failure can be the following: 

 
0

0 5,1
1

vk
vkds f

ftLV





. (3.21) 

This equation (3.21) can be further modified to take into account the 

slenderness of the panel [23]: 

 
0

0

5,1
15,1

vk

vk
ds f

ftLV









. (3.22) 
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In according to the Italian technical requirements [6], the value of the 

slenderness factor must be between 1,0 and 1,5. 
 Using the equation for shear strength, the value of the ultimate shear for 

different levels of vertical load at fixed mechanical properties and geometry 

panel can be obtained (see Figure 3.5). 

This diagram shows that the mean stress of shear failure increases with the 

square root of vertical stress, until other mechanisms of collapse of the wall 

are triggered. 

 
Figure 3.5: Variation of the ultimate diagonal shear as a function of the vertical compression. 
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3.1.1.2 Turnsek and Cacovic 

One possible way to get Turnsek and Cacovic [35] formula is from the plane 

stress state: 

  
42

2
2

2,1
yyxx

xy
yyxx 










 . (3.23) 

By assuming: 

 0xx ; 0 yy ; 0  bxy ; (3.24) 
where: 

- σ0 is the vertical stress; 

- τ0 is the shear stress; 

- 
0

 xyb   is equal to 1,5 for slenderness and 1,1 for squat piers. 

The shear resistance becomes: 

 
t

t

fb
f

AV 0
max 1


 , (3.25) 

where  

- 2tf   is the max stress, or the tensile strength of masonry. 

To calculate the ultimate shear, at the end, the following formula can be used:
 

 
t

t
ds fb

ftLV 
 1 , (3.26) 

where: 

- ft is the maximum shear resistance  obtained by a diagonal shear test on a 

masonry wall (tensile strength);  

- b is a shear stress distribution factor, which usually takes values between 

1,0 and 1,5 and is a function of the slenderness panel. 
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In particular, according to [36], the b factor is: 

 5,1b  for: 5,1
L
h

 (3.27) 

 0,1b  for: 5,1
L
h

 (3.28) 

 
L
hb   for: 5,10,1 

L
h

 (3.29) 

3.1.1.3 Other methods 

Amongst other methods, the Mann and Müller [37] method is also well known. 

Two types of diagonal failure are considered: joint cracking and brick 

cracking.  In this theory, the ultimate shear resistance depend from: 

- brick geometry and strength; 

- bonding type and friction coefficient; 

- conditions of load. 

The masonry material has the following properties: 

- masonry is not homogeneous; 

- masonry is made of different elements (bricks, bed joints, vertical joints). 

 
Figure 3.6: Bricks subjected to shear [37]. 
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Mann and Müller determined, with testing, that stresses σxst = σx , σy = 0 and  

max τst = 2,3 τ occur at the centre of the brick (see Figure 3.6). The bricks 

crack as principal tensile stress σ1 in the brick exceeds tensile strength ft,b. 

From: 

   bt
xx f ,

2
2

1 3,2
22








 


 . (3.30) 

The failure criterion is given by: 

 
bt

xbt

f
f

,

, 1
3,2


  . (3.31) 

Finally, the ultimate diagonal shear is: 

 
bt

xbt
ds f

tLf
V

,

, 1
3,2





 . (3.32) 

The brick tensile strength (ft,b) is a function of the brick compressive strength 

(fc,b):  

- for clay units: bcbt ff ,, 025,0   (3.33) 

- for bricks with grip hole: bcbt ff ,, 033,0   (3.34) 

- for bricks without grip hole: bcbt ff ,, 040,0   (3.35) 
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3.1.2 Sliding shear failure 

The sliding shear collapse can possibly develop throughout a horizontal 

mortar bed failure, usually at the base of the panel. This mode of failure is 

typical for situations where mortar has low mechanical properties or there are 

low vertical loads, or at the upper floors of the structure. 

The failure criteria, in this case, is expressed by the following equation: 

 '0   vkvk ff , (3.36) 

where: 

- fvk0 is the shear strength of the base of the wall in the absence of normal 

stress (it has the meaning of the cohesion between the blocks and mortar 

joints) and can be determined through a simple shear test on three bricks 

wall;  

- µ is a coefficient of friction usually equal to 0,4;  

- 
'

'
Dt

N


  is the mean normal stress over the compressive zone of the 

wall;  

- D' is the length of the compressed part of masonry, which can be obtained 

using the following  formula (see also Figure 3.7):  

LuD  3'  if: e < L / 6; (3.37) 







  eLuD

2
33'  if: e > L / 6; (3.38) 

- 
N
Me   is the value of the eccentricity of the axial force with respect to 

the center of gravity of the cross section and is equal to the ratio between 

the moment and the normal force applied. 

At this point the shear resistance associated with this type of collapse is 

calculated as: 

 vkss ftDV  ' . (3.39) 
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Figure 3.7: Cross section analysis. 

The shear resistance for sliding should be linear for small eccentricity and 

nonlinear for large eccentricity. Substituting the expressions of various terms, 

in the case of large eccentricity: 

  '
2

3 0  





  vkss fteLV , (3.40) 

which becomes, after expressions for normal stress and the eccentricity 

(3.38): 

 















 

tD
Nft

N
MLV vkss '2

3 0  , (3.41) 

that is: 

 
























 







 

t
N
ML

Nft
N
MLV vkss

2
32

3 0  . (3.42) 

Currently this is the adopted formula by Eurocode 8. 
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3.1.3 Bending failure 

The failure criteria which identify the limit load capacity of a masonry wall can 

consider different forms of the constitutive law of the masonry: linear, 

nonlinear (parabola-rectangle), stress block. 

In the case of constant stress-deformations block diagram, the ultimate 

condition occurs when masonry reaches the maximum deformation, usually 

equal to [6]: 

 0035,0mu . (3.43) 

Since it is generally assumed that cross section of the wall remains plane in its 

deformed configuration. The axial stress distribution is linear throughout the 

masonry section and the following value ε(x) can be determined for the axial 

strain developed by the masonry fiber at distance x from the most compressed 

side of the section (Figure 3.8): 

 
 

xx
x

x cc

mu






 
->

 

   xx
x

x c
c

mu 



. 

(3.44)
 

Then, if the stress-block distribution is assumed for compressive axial 

stresses, the position of the neutral axis can be easily evaluated by 

equilibrium: 

 Nfxt cc  85,0

 

->
 c

c ft
Nx




85,0
.
 

(3.45)
 

where: 

- Ψ is a coefficient which generally ranges between 0,8 and 1,0;  

- fc is the compressive strength of the masonry. 
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Figure 3.8: ULS analysis for buckling of a masonry cross section. 

The Italian code [6] recommend to take a maximum compression strength for 

stress block equal to 0,85 fc and ψ = 1. 

Thus, the ultimate moment can be calculated as: 

 





 

22
85,0 c

ccu
xLfxtM  . (3.46) 

Substituting the expression of the neutral axis: 

 




















c

c
c

u ft
NLf

ft
NtM

85,022
85,0

85,0 



 . (3.47) 

The following expression can be obtained for Mu after simple mathematical 

passages: 

 




















cc

u ftL
NLN

ft
NLNM

85,0
1

2
1

85,022
. (3.48) 
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The previous can also be expressed in terms of average axial stress: 

 























cc

u f
LtL

tL
N

f
LNM

85,0
1

2
1

85,0
1

2
1 

. (3.49) 

Finally, the ultimate moment can be calculated as: 

 










c

u f
LtM

85,0
1

2
1 2  . (3.50) 

The maximum eccentricity that can be calculated for ultimate sliding shear is: 

 













d

uu

f
L

Lt
M

N
Me

85,0
1

2



, (3.51) 

and the corresponding maximum curvature of cross section is: 

 
c

mu
y x


  . (3.52) 

A corresponding shear force Vbm can be associated to the ultimate moment Mu 

once the wall boundary conditions are defined and a proper value of the shear 

length Lv is defined. In the case of doubly fixed wall Lv = h/2 and: 

 
h
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. (3.53) 
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3.1.4 Comparison between different collapse mechanisms 

The following three expressions for the ultimate shear have been determined 

in the previous section depending on the actual above three failure 

mechanisms under consideration: 

- diagonal shear: 
0

0

5,1
15,1

vk

vk
ds f

ftLV









; (3.54) 

- sliding shear: vdss ftDV  ' ;
 

(3.55) 

- flexural shear: 
h
MV u

bm



2

.
 

(3.56) 

The ultimate shear strength Vu is the smallest: 

  bmssds VVVV ,,min . (3.57) 

It is possible to calculate the stiffness for the elastic range of the wall’s 

response with the following formula, which takes into account both the 

bending stiffness and shear deformation: 

 
AG
h

IE
h

k










12

1
3 , 

(3.58) 

where: 

- 
IE

h
12

3

 is the displacement in bending; 

- 
AG
h



 is displacement in shear; 

- 2,1
5
6
  (in the case of rectangular cross section). 

The previous relationship is identical to the following [17]:
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The corresponding displacement can be defined at the conventional yield: 

  kV
 

->
 k

V
y  .

 
(3.60)

 
For the complete definition of the constitutive law of the wall panel (showed 

in Figure 3.9), the ultimate displacement can be defined as a product of the 

elastic limit displacement by a ductility factor: 

 yu   . (3.61) 

 
Figure 3.9: Bi-linear shear behaviour.

 The ductility factor is defined as ratio between the ultimate displacement and 

the elastic limit displacement: 

 
y

u




  . (3.62) 

It has prescribed in [17] value of ductility equal to:  

- 1,5 for existing walls in good condition;  

- 2,0 for existing reinforced walls. 

Moreover, [6] fixes the value of ultimate displacement as a percentage of pier 

height as a function of different type of failure:  

- 0,4% h for the shear failure mode (diagonal or sliding);  
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- 0,8% h for the flexural failure mode. 

It is interesting that, if the geometrical and mechanical characteristics of the 

panel are fixed, the failure mode depends only on the axial force. 

In the following Figure 3.10 there are the trends of three ultimate shear as a 

function of the normal force (in no-dimensional values with the use of a factor 

like Ltfc). Usually, for small values of normal stress, sliding shear is critical; for 

intermediate values there is a diagonal cracking and for large values there is a 

flexural failure. These curves present the interaction diagram of the wall. 

 
Figure 3.10: Variation of ultimate shear stress in relation to normal (FN) for the three collapse 

modes.
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3.2 Classification 

The behaviour of multi–storey structures is strongly influenced by the 

presence of spandrels. Indeed, according to the rigidity of the spandrels in 

relation to that of piers there are different static schemes of  these ones. In 

practice, the models change from piers prevented to rotate at the top 

(infinitely rigid spandrels) to piers free to rotate to the top. In some analysis 

models the presence of spandrels in addition to the masonry walls are 

considered. 

The methods of analysis can be:  

1) one-dimensional models: the masonry walls and spandrels are shown as 

frame elements in nonlinear behaviour;  

2) bi-dimensional models: they used finite elements or macro elements. 

The one-dimensional models may require the use of:  

a) infinitely rigid spandrels: POR method [18], RES method [38], Porflex 

method [34], floor spandrels method;  

b) transverse with zero bending stiffness: independent piers models, piers 

coupled with penduli;  

c) equivalent frames: SAM method [39]. 

The bi-dimensional models, as mentioned, use:  

a) finite macro-elements: SISV model [40][41], MAS3d model [42][43];  

b) finite elements: [44][45]. 
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3.2.1 One-dimensional models: with rigid transverse 

3.2.1.1 POR Method 

One of the most popular simplified methods for the analysis of the walls 

behaviour for in-plane action is POR method [18]. In this method the 

possibility that piers collapsing producing a crisis for diagonal cracking are 

considered.  

The method in question does the following assumptions:  

1) infinite strength and stiffness of the floor spandrels;  

2) piers crisis for diagonal shear;  

3) negligible increases in piers of normal stress due to horizontal actions. 

For the first hypothesis, the wall analysis models is reduced to a simple shear-

type frame, as shown in the following example in Figure 3.11. 

   
Figure 3.11: Real wall (on the left) and POR modelling. 

In practice, the spandrels are replaced by rigid transverse and only piers are 

deformable elements. This first hypothesis is very forced, especially when in 

the considered structure they are not present stiffening elements such as 

architraves or spandrels with significant thickness (especially on the top 

floor) or floor beams. 
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However, this assumption produces acceptable results for structures with 

regular openings and made up by few floors. Manual analysis of the masonry 

walls can be done.  

The second case involves a crisis in the piers only for diagonal cracking. This 

assumption is valid especially for squat piers, or with low slenderness ratios 

(height/length). 

The more restrictive assumptions, however, is the third. The reason is that, 

especially for tall buildings, the horizontal seismic action can cyclical increase 

or decrease the normal stress in piers, especially the most perimetral. 

The POR method was formulated, in the first place, with reference to a single 

piers wall and subjecting it to a quasi-static test with cyclic loading in its plane.  

From such tests, recording the top displacements in function of the base shear, 

it is possible to achieve nonlinear developments such as the Figure 3.12. 

 
Figure 3.12: Constitutive law of a single masonry panel and relative idealisation. 

However, this complicated relationship can be simplified by considering a 

conveniently elastic–perfectly plastic behaviour. 

To calculate the ultimate shear, the following formula proposed by the NTC 

2008 [6] and Commentary No. 617 [23], valid in the presence of non–zero 

vertical stress, can be applied: 
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Alternatively the following formula, proposed by Commentary 21745 [17] can 

be used:
 

 
0

0
0 5,1

1
vk

vkds f
ftLV





. (3.64) 

Finally, there is the following relationship proposed by Turnsek and Cacovic 

[35]:
 

 
t

t
ds fb

ftLV 
 1 . (3.65) 

where: 

- ft is the maximum shear strength, greater than fvk0, obtained through a 

diagonal shear test on a masonry wall;  

- b is a distribution shear stresses factor, which usually takes values 

between 1,0 and 1,5 and is a function of the slenderness panel. 

In particular, according to Benedetti and Tomazevic [36], the b factor is: 

5,1b  for: 5,1
L
h

 (3.66) 

0,1b  for: 5,1
L
h

 (3.67) 

L
hb   for: 5,10,1 

L
h

 (3.68) 

To define completely the previous relationship it is necessary to introduce a 

panel stiffness, which takes into account both the bending deformability and 

shear deformability: 

 
vf kkk

111
 , (3.69) 

in the case of rectangular cross section:
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Ultimately, the relationship of each panel is represented by the following 

equations: 

    kV  if: k
Vds

y  0  (3.71) 

  dsVV   if:   yuy  (3.72) 

where: 

- µ is a ductility factor greater than one. 

Turning, finally, to consider an entire wall, a shear-displacement relationship 

for each pier can be defined and then the superposition principle can be 

applied to obtain the curve for the entire wall. 

In this case:  

a) the maximum displacement of entire wall coincides with the minimum 

ultimate displacement among those of all the individual piers;  

b) the elastic limit displacement coincides with the lowest elastic 

displacement of all piers;  

c) the overall wall stiffness gradually decreases when the piers are 

plasticised. 

Ultimately, for the wall exposed in the previous Figure 3.11, for example, the 

following behaviour of Figure 3.13 can be obtained.  

From the previous diagram, the ultimate shear of the wall can be compared 

with the seismic shear applied to the structure to carry out a seismic 

verification. In particular: 

 hu FV  . (3.73) 

In particular, standards [46] requiring: 

1) 10,1
h

e
e F
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2) 15,1
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f F

V
 ;  (3.75) 
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3) 20,1
h

u
u F

V
 .  (3.76) 

 
Figure 3.13: Constitutive law of a wall obtained by the POR method. 

where: 

- Ve is the minimum elastic shear of all masonry walls;  

- Vf is the wall carrying capacity to the cracking limit, that is the shear 

corresponding to a displacement equal to 20% higher than that seen in 

the preceding point;  

- Vu is the shear at the minimum ultimate displacement of all masonry 

walls. 

The Commentary 21745 [17] and Ministerial Decree 16/01/1996 [19] include 

a verification solely on the ultimate wall strength, which must be greater than 

the design seismic base shear. Finally, the OPCM 3274 [22] has two modes of 

verification:  

a) in the case of linear analysis  a test of wall strength as the Ministerial 

Decree of 1996 is required;  

b) in the case of nonlinear analysis, however, a displacement check both 

with reference to the Damage Limit State and with reference to the 

Ultimate Limit State is required. 
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3.2.1.2 RES Method 

The RES method [38] (Equivalent Slenderness Ratio) represents an evolution 

of the POR method and was introduced to take into account the influence of 

geometric slenderness and floor spandrels on the evaluation of ultimate 

strength of multi–storey  masonry walls. 

Since the POR method is procedure with a check of each floor, the following 

hypotheses must be assumed:  

1) all possible modes of collapse of the walls (diagonal cracking, shear 

sliding and bending) are possible;  

2) the wall’s slenderness must change for single pier to take into account the 

infinite stiffness of the spandrels. 

In other words, for the second hypothesis, an intermediate behaviour between 

multi storey wall model (although with windows) and independent masonry 

walls connected by penduli model must be defined. The purpose is to 

overcome the applicability of the POR method to buildings of only two or 

three floors, which were summarised as the shear-type frame. 

To take into account the different failure modes, the RES method introduces a 

correction factor kt of the ultimate shear calculated with the POR. In 

particular: 

 tPORuu k , . (3.77) 

where: 

- kt is the correction factor which depends by the ratio between the 

ultimate shear ultimate corresponding to the three mode of collapse;  

- τu is the no-dimensional ultimate shear of the wall panel;  

- τu,POR is the no-dimensional ultimate shear for diagonal cracking crisis. 

The RES method uses the following equation for calculating  the optimal 

slenderness of masonry walls, in order to take into account the effective 

stiffness of the spandrels: 
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where: 

- 
B
h

p
0  is the slenderness of the full wall, disregarding the openings; 

- 
T
Mh 


2

0'  is double of the ratio between the moment and the base shear 

of the wall;  

- B is the base length of the entire wall;  

- 
i

im b
h0

,   is the wall slenderness of the single pier;  

- bi is the base width of the pier;  

- 
i

v

h
h

  is the ratio between the height of the opening and the height of 

floor;  

- fvk0 and fck are, respectively, the characteristic shear strength in the 

absence of normal stress and the characteristic compressive strength. 

The previous report was obtained by performing several finite element 

simulations and the accuracy of the method has been checked by comparing 

with the computer code ADINA  (see Figure 3.14). 

 
Figure 3.14: Comparison between approximate methods and sophisticated methods. 
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3.2.1.3 Porflex method 

The Porflex method [34] serves to extend the POR method to structures with 

many floors and more complex but still preserving the simplicity of the 

method. 

In this method they have been removed some of the simplifying assumptions 

by POR method, in particular:  

- spandrels infinitely stiff but not infinitely deformable;  

- piers failure for shear or bending;  

- variable normal stress in piers. 

For the first two assumptions, the Porflex method is certainly conservative 

compared to the POR method, or the Porflex method and gives results in terms 

of forces, lower than the POR method. 

The scheme of the Porflex method wall is an equivalent frame of the masonry 

wall consists on rigid and deformable sections (shown in Figure 3.15). 

 
Figure 3.15: Equivalent frame of the Porflex method. 

In this scheme, the piers have considered constrained in spandrels. In 

particular, there is a sliding interlocking until the stresses are lower than the 

failure condition and a hinge in the case of a shear or bending failure. 

In particular, in this method they are taken the following constitutive laws 

shown in Figure 3.16:  

a) rigid-fragile relationship for the normal and shear stresses into spandrels, 

that are infinitely stiff but not infinitely strong;  

b) elastic-perfectly plastic relationship for shear behaviour of masonry 

walls, similar to what is assumed for the POR method;  
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c) elastic-fragile relationship for normal stresses behaviour, both in tensile 

and compressive stress. 

 
Figure 3.16: Constitutive laws of the resistant elements in Porflex. 

In this method, in order to take also the spandrels as resistant elements,  the 

masonry tensile strength must be assumed not zero. The reason is that, unlike 

piers, the wall spandrels have not subject to any normal stress and, therefore, 

there can be no equilibrium regardless of the tensile strength of masonry. 
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3.2.2 One-dimensional models: transverse with no-bending 

stiffness 

3.2.2.1 Models with independent walls 

In this case, the masonry walls behave as a strong independent element to 

each other and modelled as the frames fixed to the base (Figure 3.17). 

This model is acceptable when the following two conditions occur:  

1) floor spandrels, both material and size, are of very little strength and are 

therefore not a constraint for the masonry walls;  

2) there are not floor beams and then the piers are independent on each 

other. 

In this situation, seismic testing should be conducted separately for each piers. 

 
Figure 3.17: Wall model with transverse of nothing flexural stiffness and no floor beams. 

The static model consists of different frames fixed at the base and subject to 

forces at the level of floor. For this reason, the characteristic of shear stress 

and the normal stress grow downward. 
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The bending moment, however, is linear. For this reason, for each 

independent piers, the check at each level taking into account all the possible 

collapse mechanisms must be executed. 

For the model assumed in this case, there are large bending moments at the 

base and large slenderness of the wall. This often makes determinant the 

bending shear verification. 

3.2.2.2 Models with walls linked by penduli 

In this case there is a wall made of masonry piers connected together at each 

floor level, from inextensible penduli (Figure 3.18). This model is valid when it 

is possible to consider floor spandrels deformable and with very little strength 

and when the floor beams are very effective. 

In this case, therefore, the penduli require an equality of displacements at 

each floor. For this reason, the seismic actions to apply to different piers, 

unlike the previous case, must be divided among piers according to their 

rigidity. 

 
Figure 3.18: Wall model with transverse of nothing flexural stiffness and efficient floor beams. 
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In particular, for the generic piers is: 

      iii KF  , (3.79) 

where: 

-  iF  is the vector of the floor seismic forces relating to the piers “i”; 

-  iK  is the stiffness matrix of translating of the piers “i”; 

-  i  is for the vector of the storey displacement of piers “i”. 

For the entire wall must be: 

                    KKKFF
i i

iii
i

i , (3.80) 

where: 

-  F  is for the vector of the floor seismic forces of the entire wall;  

-  K  is the stiffness matrix of the entire wall;  

-    is the vector of displacements of the entire wall. 

The floor global displacements, for the presence of inextensible pendulums, 

are equal to floor displacement of individual frames. 

Reversing the previous (3.80) the unknown displacements, which then enable 

the analysis of the actions of individual piers, can be obtained: 

          FDFK  1 , (3.81) 

being: 

-    DK 1  the matrix of deformation of the entire wall. 

The stiffness matrix of the entire wall can, therefore, be calculated from the 

stiffness matrix of individual masonry walls. This last, in turn, can be 

calculated, proceeding by columns, in two ways:  

a) direct method: the generic piers is subjected to the unitary displacements 

of each floor and the relative shear can be calculated;  

b) indirect method: the generic piers is subjected to the unitary action at 

each floor and can be calculated the floor displacements, which constitute 
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the terms of the matrix deformation, which can be inverted to obtain the 

stiffness matrix. 

The indirect method presents, unlike the direct method, an extra step because 

it needs to invert the matrix of deformability. 

However, the indirect method is used because it allows to work on a isostatic 

structure (frames subject to unitary forces), unlike the direct method, where 

the displacements to apply to each unit, whether by use of auxiliary 

constraints. 

3.2.3 Equivalent frames models 

A good model for analysis of a masonry structure must possess the following 

basic requirements:  

1) it must include all the possible collapse mechanisms;  

2) it must comply with all local and global equilibrium;  

3) it must be reached the right balance between level of detail and ease of 

use;  

4) it need to define the damage, for example according to the displacement. 

The following paragraphs set out the methods based on the use of macro 

elements or finite elements, which generally provide excellent reliability, but 

are often expensive to apply. 

For that reason today they are often used simplified models, especially with 

equivalent frames. In this model, the generic masonry structure is reviewed as 

a frame made up from truss items. Often, the model would involve the use of 

rigid offset in order to outline the nodal zones of intersections between piers 

and spandrels. The most important of these methods is no doubt the SAM 

method [39] that is shown below. 
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3.2.3.1 SAM method 

This is an equivalent frame method developed by Magenes and Calvi in 1996 

[39]. Initially this method was implemented for the analysing of plan walls. 

Then, for three-dimensional buildings, the algorithm was implemented in a 

nonlinear structural analysis code. 

Consider the analysis of a multistory wall subjected to increasing horizontal 

actions and constant vertical loads (see Figure 3.19). 

 
Figure 3.19: Schematic equivalent frame of a wall loaded in the plane [39]. 

It is possible modelling the wall as a frame consisting of:  

- piers elements;  

- spandrels elements;  

- nodes elements. 

Only the first two elements are modelled as elements with axial and shear 

deformation. The node elements are infinitely rigid and strong and they are 

modelled through the use of offset elements. 

The piers elements are characterised by a certain effective length of the 

deformable part, which can be calculated with an appropriate formula 

proposed from Dolce [47] and exposed in Figure 3.20. 
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Figure 3.20: Effective length in piers [39]. 

For masonry walls they are provided the following failure mechanisms:  

a) failure for bending: when the ultimate bending moment to the extreme 

sections of the deformable part is reached;  

b) failure for shear with diagonal cracks: it happens when the ultimate value 

of the shear is reached, assumed to be equal to the minimum value among 

the diagonal shear associated with the failure of the mortar joints and the 

diagonal shear associated with the failure of the bricks;  

c) it is assumed an elastic–plastic behaviour with a limit deformation;  

d) failure for sliding shear: it occurs along a mortar bed of one of the 

extreme sections. 
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For the masonry element spandrels they are defined effective lengths similar 

to those of piers, but the possible failure mechanisms are only for bending and 

shear (see Figure 3.21). In particular, in the case of shear failure the different 

location of the mortar beds must be taken into account. 

 
Figure 3.21: Definition of the effective length of the spandrel [39]. 
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3.2.4 Bi–dimensional models 

3.2.4.1 Models with macro–finite elements 

The idea of using macro-elements is due to the search a discretisation of a 

generic wall as consisting of areas with a very pronounced damage (piers and 

spandrels) and areas that are preserved intact, in seismic combination, as if 

they should be rigid elements. 

The entire wall is then modelled by an assembly of macro-elements 

opportunities connected with rigid blocks. Subsequently, these models allow 

to perform seismic analysis to evaluate the static and dynamic response of the 

wall. 

The models with macro elements include:  

- SISV model [40][41] (Settis Inclined with Variable Section) means any 

element of vertical masonry panel is modelled as a tensile zone not 

cooperating and a compression zone modelled as a variable section beam 

element (Figure 3.22); 

 
Figure 3.22: Model with finite element with variable geometry [39]. 
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- MAS3D model [42][43]: it uses a panel element (shown in Figure 3.23) 

that does not respond to compression and is made from a compressed set 

of fans whose terminal faces are rigid and are not allowed interactions 

between the sides of the primary fans. 

 
Figure 3.23: Multi–array element [39]. 
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3.2.4.2 Finite Elements Models 

The Finite Element Method (FEM) is a discretisation techniques which turns 

the partial differential equations of general structural problems to a set of 

algebraic equations. 

As a first step, the body or structure is subdivided (discretised) in different 

subdomains called Finite Elements (see Figure 3.24). Those subdomains are 

connected to each other in some nodes which define a so-called mesh. The 

displacement of the nodes of the structural system are generally assumed as 

key unknown of the structural problem. 

 
Figure 3.24: Bi-dimensional finite elements. 

For the correct discretisation the following customs must be respected: 

a) to avoid elements with irregular form: long and thin rectangles, flattened 

triangles;  

b) to thicken the number of nodes in areas where stresses are concentrated; 

c) to evaluate the accuracy of the results obtained by increasing the 

thickening and evaluating the convergence conditions. 
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3.3 Seismic analysis of masonry structures 

The seismic analysis is intended at determining the effects (in terms of 

displacement, stresses and strains) induced by the earthquake shaking on the 

structure under consideration. 

Firstly structural analysis under seismic actions may be linear: an elastic 

analysis is carried out considering the structure subjected to a set of static 

forces by considering a fixed value of the q–factor. It takes into account the 

dissipative capacity of structure and the damage capacity compatibly with the 

desired level of performance. 

This factor can be defined as the following ratio (Figure 3.25): 

 
y

e

y

e

F
Fq




 .
 

(3.82)

 
where: 

- Fe is the elastic force of the structures modelled like an SDOF (Single 

Degree of Freedom) under seismic load; 

- Fy is the limit elastic force of the system; 

- δe and δy are the elastic displacement under seismic load and the elastic 

limit displacement. 

 
Figure 3.25: Transition from elastic behaviour to an elastic perfectly plastic behaviour. 
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The possible reduction of the elastic force Fe depends on the available ductility 

of the structures. It is clear that fragile structures (µ = 1) should be designed 

for bearing elastically under action Fe. However, q-factor value can be 

determined with the following relationships: 

12  q  if: CTT  ; (3.83) 

q  if: CTT  . (3.84) 

where: 

- 
y

u




   is the ductility of the structural system idealised as an elastic 

perfectly plastic behaviour and equal to the ratio between the ultimate 

system displacement and the plasticisation displacement;  

- T is the fundamental structure period of vibration, properly represented 

as a SDOF system. 

In particular, it was observed experimentally that the behaviour is 

represented in the following Figure 3.26. 

 
Figure 3.26: Change of the q–factor as a function of the vibration period for fixed values of 

ductility. 
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The two previous equations can be obtained from the following two 

principles: 

a)  in the case of short periods, so-called principle of “conservation of 

energy”, which can equalise the area under the linear behaviour and the 

area subtended the bi–linear  behaviour;  

b) in the case of high periods, the principle of “equal displacement” is valid, 

and ultimate displacement of the elastoplastic structure is equal to the 

maximum displacement of the elastic structure. 

In the first case (see Figure 3.25), an analytical relationship between the 

available ductility µ and the force reduction factor (q) can be obtained. 

In particular, the equivalence of the energy shared by the elastic and inelastic 

system represented in Figure 3.25 leads to the following relationship: 

  yuyyyee FFF  
2
1

2
1

,
 

(3.85)

 and, after dividing for Fy δy the (3.85): 
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(3.86)

 
Remembering the first definition of q–factor in (3.82) and multiplying for two 

the previous relationship (3.86), the following solution is obtained: 

 12  q .
 

(3.87)

 

In the second case (shown in Figure 3.27), instead: 

 CTT  .
 

(3.88)
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Figure 3.27: Case 2. 

The q–factor, in this case, will be, for the principle of equality of maximum 

displacement: 
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(3.89)

 
Seismic analysis of structures can then also be nonlinear, when they take into 

account the nonlinear capacity of the material and geometry. This type of 

analysis is used for dissipative systems, that have some capacity in plastic field 

and have a ductility greater than one. 

A second classification of seismic analysis, in relation to how they will handle 

the equilibrium, distinguishes between:  

- static analysis: they use lateral actions that must be applied to the 

structure for modelling the earthquake and in the analysis of stresses and 

deformations;  

- dynamic analysis: to perform the structure modal analysis, the 

identification of the main modes of vibration and evaluation of the effects 

that produce. 
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3.3.1 Linear static analysis 

The dynamic response to seismic actions can be studied using linear and 

nonlinear analysis on a standard three dimensional model. The analysis of the 

local effects can refer instead to models of isolated parts of the whole resistant 

organism. 

The linear static analysis is based on applying static forces, which are 

supposed to be equivalent to the ones induced by the earthquake. This 

analysis is usually applied to buildings that look like regular period of 

oscillation that verifying with the relation: 

 DTT 1 .
 

(3.90)

This analysis procedure can be performed manually and it is also useful 

during the pre–sizing. 

The linear static analysis can be applied to both regular buildings in height 

and irregular building. The regularity requirement is necessary to ensure that 

same oscillations are similar to those of a system with a single degree of 

freedom (SDOF: Single Degree of Freedom), with the involvement of the 

totality of the mass and with torsional oscillations limited. For irregular 

buildings any seismic reduction is possible. 

The static analysis is conducted using rigid floor in the horizontal plane and 

obtaining the walls stiffness, taking into account both the flexural and the 

shear stiffness. The floors may be considered infinitely rigid in the horizontal 

plane if they are made about r.c. or if in steel or wood, but with a slab of 

minimum 4 to 5 cm thickness and well connected with shear connectors to the 

themselves beams. 

The analysis model used for masonry structures is that of continue walls from 

the foundation to the top, linked for the translation purpose to the floors 

height. Ultimately they are a lot of walls fixed in the foundation subjected to 

proportional seismic forces by to their rigidities. 
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To define the seismic actions, the response spectra must be firstly defined. The 

NTC 2008 [6] provide a seismic classification of the national territory of a 

continuing nature. The parameters that characterise the seismicity of the site 

are derived from the latitude and longitude of the site. 

Usually the buildings can be considered as consisting of vertical earthquake 

resistant macro-elements and substantially rigid floors and therefore each 

with only three degrees of freedom. With the modal analysis the modes of 

vibration must be find. The rule allows the use of simplified analysis, static 

analysis, which approximates the effects due only to the first mode of 

vibration. 

Seismic actions that must be applied to the structure will be obtained as a 

product of the structural masses for the ordinate of the acceleration design 

spectrum, as defined by regulations. The static analysis can only be used for 

structures that are not excessively deformable and quite regular (like normal 

buildings for residential use). In these cases, the structure must have, 

therefore, a center of mass (point of application of seismic action) near enough 

to the center of stiffness, so to limit the rotations of the floor. 

The seismic actions evaluation, induced in the structure vertical resistant 

panels’ plane, is calculated by applying a distribution of equivalent static 

forces distributed along the height in a pseudo triangular waveform for the 

first mode of vibration: 

  



jj

ii
hi Wz

WzFF .
 

(3.91)

 
Having denoted by Fh the design base shear, amounting to: 

  
g

WTSF dh  1 ,
 

(3.92)

 
where: 

- zi and zj are the quota of floors with respect to the start foundation;  

- Wi and Wj are the weights of the floors of the building;  
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- Sd(T1) is the value of the design response spectrum calculated for the 

structure’s vibration period;  

- W is the total weight of the building;  

- λ is the coefficient reductive, equal to 0,85 for structures with at least 

three floors and T1 < 2 Tc  and 1,00 in other cases. 

The floor seismic forces calculated with the previous (3.91) will be applied in 

the floor’s center of mass and will have an effective eccentricity with the walls’ 

center of stiffness. 

To the previous effective eccentricity, which depends on the real geometrical 

distribution of the masses, it need to add accidental eccentricity at least 5% of 

the maximum size of the building along the orthogonal direction to that 

seismic action. 

Regarding the evaluation of the torsional effects of buildings with stiffness and 

mass distributed in an almost symmetrical in plan, an increasing factor δ can 

be used. 

This factor considers the position of the single wall in relation to the 

geometric center of gravity of the building, and the maximum distance 

between two resistant element measured perpendicularly to the seismic 

direction: 

 
eL

x
 6,01 ,

 
(3.93)

 
where: 

- x is the distance from the geometric building center of gravity and the 

generic wall, measured perpendicular to the seismic direction in 

question; 

- Le is the distance between the two most distant resistant walls, measured 

perpendicular to the seismic direction in consideration. 

 

 



Chapter 3                                                                            Analysis of masonry walls 

 135 

3.3.2 Nonlinear static analysis: N2 method 

The structural analysis can be carried out on both linear and nonlinear 

models.  

The nonlinear system capacity depends on material’s nonlinearity, or the 

material capacity to deform in the plastic field.  

Nonlinear static analysis are widely utilised for simulating the seismic 

response of structures. On the one hand, they allow for mechanical 

nonlinearity of materials (and possibly for geometrical non linearity) to be 

explicitly considered in structural analysis. On the other hand,  they are 

reasonably cost-effective as a system of static forces is actually considered 

(instead of the base shaking induced by the earthquake event) for simulating 

the inertial seismic-induced actions on the structure under consideration. 

 
Figure 3.28: Scheme of pushover test. 

Pushover analyses are generally based on two keys steps [48]: 

- first of all the “capacity curve” (namely a curve relating the base shear 

force V to the top displacement induced on the structure and reported in 

Figure 3.28) is determined by considering the nonlinear behaviour of 

material and structure; 

- based on key in formulations deriving by the “capacity curve” the 

displacement demand induced by the expected seismic event can be 

determined. 



Gerardo Carpentieri  Matr. 06201/00179 

136 

An intermediate step is actually needed for employing the “capacity curve” in 

determining the above mentioned displacement demand (or the so-called 

“performance point”) of a structure under seismic action. In particular, the 

“capacity curve” should be transformed into “capacity spectrum” which 

describes the behaviour of the so-called equivalent SDOF system. 

Details about the conceptual meaning of this mathematical transformation are 

beyond the scope of this work and are omitted herein. They can be found in 

[48][49].  

Figure 3.29 shows two ideal examples of capacity curve. The first one has been 

clearly derived by only considering non-linearity whereas the second one is 

also based in a geometrically nonlinear model which lead to a softening 

response of the structure under lateral loads. 

Several contributions are already available in the scientific literature on this 

topic [48].  

 
Figure 3.29: Comparison between the pushover curve obtained with test in force control (1) and 

that obtained in displacements control (2). 
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4. Analyses models through ordinary FEM codes 

4.1 Introduction 

In the following sections there are some applications about the frequent used 

models of masonry structures. The analyses that follows are presented both in 

the linear range and in the nonlinear range, by application of the principles 

exposed in the previous chapter 3. 

The analyses models can use the following typologies  of elements: 

1) one-dimensional elements; 

2) bi-dimensional elements; 

3) three-dimensional elements. 

The nonlinear analyses, shown in this chapter, are very important especially 

for the analysis about existing masonry structures because they permit to 

know the better work to do for improve the seismic strength. 

4.2 Linear analyses 

The linear analyses is a procedure that permits to understand the behaviour of 

a structure under some loads in the elastic range. This assumption doesn’t 

permit the modelling of the real nonlinear capacity of the masonry structure 

but it has used in the Finite Elements codes (like SAP2000®) for to obtain the 

strain and the stiffness in an “elastic prediction”. Those results  can be used for 

to check the singles elements (i.e. piers or spandrels) with respect the relative 

strength domains, which are obtained by considering the nonlinear behaviour 

of the elements (failure modes exposed in chapter 3). 



Gerardo Carpentieri  Matr. 06201/00179 

138 

4.2.1 One-dimensional elements 

The one-dimensional elements available in SAP2000® are the frame of type 

Finite Elements. These are appropriate for modelling the masonry walls with 

an equivalent frame, similar to what is done in the SAM method [39]. 

In particular for each frame element they are assigned some rigid offsets of 

appropriate length to predict the behaviour of the nodal areas. 

The frame element can be a complete and correct modelling of a pier or a 

spandrel element of the real masonry wall with the definition of their cross 

section and the material properties. 

The following Figure 4.1 shows the modelling of the wall subjected to both 

vertical and horizontal loads due to mass and earthquake.  

   
Figure 4.1: Frame model (on the left) and deformed shape (in the right). 
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4.2.2 Two-dimensional elements 

The previous masonry wall can also analysed by using different type of Finite 

Element so-called shell elements. These elements are very useful for 

modelling the wall using a plane type elements, which are closest to the real 

structure. In fact, the real masonry element like a pier or a spandrel, 

frequently, have only one dimension (the thickness) negligible with respect 

the other dimensions (height and length).  

The following Figure 4.2 shows the different solution obtained by the use of 

shell. In particular these elements are good for easily see the shear stress in 

the walls (shown in Figure 4.3).   

   
Figure 4.2: Shell model (on the left) and deformed shape (on the right). 
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Figure 4.3: Resultant shear stress (F12) diagram.  

4.2.3 Three-dimensional elements 

The modelling of a masonry structure by the use of a three-dimensional 

elements is the more complete and complex way to analyse the masonry. This 

modelling is necessary when the walls have a thickness not negligible with 

respect the other dimension of the structures or when it needs to understand 

the behaviour of a single masonry panel subjected to a vertical and horizontal 

loads. In these modelling are possible the definition of the single elements that 

are in the masonry: bricks, mortar beds, cracks. This modelling include the 

first definition of the mesh and after is performed a pushover analysis [50]. 
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4.3 Nonlinear analyses 

The nonlinear analyses are used for modelling the real capacity of the 

masonry structure for to obtain the pushover curve, which can be used in the 

more complex analyses like N2 method [48]. The nonlinear analysis can be 

obtained in SAP2000® with the use of the following elements: 

1) springs or hinges; 

2) link elements. 

4.3.1 Frame elements 

There are finite elements like springs or hinges at the extremity of the frame 

elements with a behaviour described with the principles reported in [11]. 

These elements, however, are difficultly used for the masonry because cannot 

permit to define the real failure modes of walls.  

However some springs, with variable stiffness, at the end of the elements can 

be used for  the nonlinear analysis of the masonry structures. In particular, in 

the next chapter 5 a novel code which include these elements will be 

described.  
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4.3.2 Link elements 

Link elements can be used for modelling the deformable part of the walls (like 

spandrels or piers) and for connect the nodal areas (which are modelled with 

rigid offsets frame elements). This modelling permits to define the real 

behaviour of the wall, by the assignment of the moment vs. rotation and shear 

vs. displacement diagrams (different for each link). At the end of the analysis 

is possible to obtain the pushover curve that can be used in the nonlinear 

analysis for to understand the damages of the structure. 

At this point it is possible to analyse the previous masonry wall with the use of 

the link elements. The first step is the definition of the properties of each walls 

(see Table 4.1). It is assumed a constant and independent normal stress 

during the application of horizontal forces and equal to that due only to 

vertical loads present on the previous wall. For each element of the wall the 

size and the normal stress are identified. 
Table 4.1: General parameters of piers and spandrels.  

i ID t L h N σ0 

[] [] [mm] [mm] [mm] [N] [MPa] 
1 M_F1_1000 500 1000 1500 76380 0,15 
2 M_F1_1400 500 1400 1500 113800 0,16 
3 M_F1_1200 500 1200 2400 99510 0,17 
4 M_F2_1000 500 1000 1500 45800 0,09 
5 M_F2_1400 500 1400 1500 67080 0,10 
6 M_F2_1200 500 1200 1500 54990 0,09 
7 M_F3_1000 500 1000 1500 14390 0,03 
8 M_F3_1400 500 1400 1500 22410 0,03 
9 M_F3_1200 500 1200 1500 17380 0,03 

10 F_F1 500 1300 1000 0 0,00 
11 F_F2 500 1300 1000 0 0,00 
12 F_F3 500 200 1000 0 0,00 

Legend:  

M = Pier;  F = Spandrel; 

F1 = First floor; F2 = Second floor;  F3 = Third floor. 
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The ultimate bending moment and the ultimate shear (reported in Table 4.2) 

can be calculated, as defined in the preceding paragraphs 3.1. 

The stiffness of each part can be obtained in Table 4.3, with the relationship 

reported in Commentary No. 21745 [17], which includes both the shear 

deformation and the flexural deformation. This stiffness is then used to 

calculate the displacements at the elastic limit and ultimate displacement. 

For the shear behaviour, therefore, is defined an elastic perfectly plastic link. 

Instead, for extensional and flexural regime they are used indefinitely elastic 

links. 
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Table 4.2: Analysis of the ultimate shear. 

i ID Mu e D' σN fvd Vss Vbm b Vds Vu 

[] [] [Nmm] [mm] [mm] [MPa] [MPa] [N] [N] [] [N] [N] 
1 M_F1_1000 35902194,35 470,05 89,86 1,70 0,79 35494,24 47869,59 1,50 76325,62 35494,24 
2 M_F1_1400 74581396,08 655,37 133,88 1,70 0,79 52883,53 99441,86 1,07 151890,21 52883,53 
3 M_F1_1200 55822768,59 560,98 117,07 1,70 0,79 46242,88 46518,97 2,00 70093,67 46242,88 
4 M_F2_1000 22077396,08 482,04 53,88 1,70 0,79 21283,53 29436,53 1,50 68588,14 21283,53 
5 M_F2_1400 45191401,41 673,69 78,92 1,70 0,79 31172,47 60255,20 1,07 135535,91 31172,47 
6 M_F2_1200 31808156,82 578,44 64,69 1,70 0,79 25554,18 42410,88 1,25 98776,55 25554,18 
7 M_F3_1000 7113795,25 494,36 16,93 1,70 0,79 6687,12 9485,06 1,50 59603,97 6687,12 
8 M_F3_1400 15490055,65 691,21 26,36 1,70 0,79 10414,06 20653,41 1,07 117794,67 10414,06 
9 M_F3_1200 10309543,37 593,18 20,45 1,70 0,79 8076,59 13746,06 1,25 85871,05 8076,59 

10 F_F1 0,00 - - - - - - 0,77 139425,00 139425,00 
11 F_F2 0,00 - - - - - - 0,77 139425,00 139425,00 
12 F_F3 0,00 - - - - - - 5,00 3300,00 3300,00 

Legend: 
Vss is the ultimate sliding shear; 
Vbm is the ultimate flexural shear; 
Vds is the ultimate diagonal shear. 
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Table 4.3: Analysis of the shear behaviour. 

i ID A I EA GA EI k δy δu 

[] [] [mm2] [mm4] [N] [N] [Nmm2] [N/mm] [mm] [mm] 
1 M_F1_1000 500000 4,17E+10 3,63E+08 6,05E+07 3,03E+13 25608,47 1,39 2,08 
2 M_F1_1400 700000 1,14E+11 5,08E+08 8,47E+07 8,30E+13 40584,77 1,30 1,95 
3 M_F1_1200 600000 7,20E+10 4,36E+08 7,26E+07 5,23E+13 16205,36 2,85 4,28 
4 M_F2_1000 500000 4,17E+10 3,63E+08 6,05E+07 3,03E+13 25608,47 0,83 1,25 
5 M_F2_1400 700000 1,14E+11 5,08E+08 8,47E+07 8,30E+13 40584,77 0,77 1,15 
6 M_F2_1200 600000 7,20E+10 4,36E+08 7,26E+07 5,23E+13 33141,23 0,77 1,16 
7 M_F3_1000 500000 4,17E+10 3,63E+08 6,05E+07 3,03E+13 25608,47 0,26 0,39 
8 M_F3_1400 700000 1,14E+11 5,08E+08 8,47E+07 8,30E+13 40584,77 0,26 0,38 
9 M_F3_1200 600000 7,20E+10 4,36E+08 7,26E+07 5,23E+13 33141,23 0,24 0,37 

10 F_F1 650000 9,15E+10 4,72E+08 7,87E+07 6,65E+13 60564,32 2,30 3,45 
11 F_F2 650000 9,15E+10 4,72E+08 7,87E+07 6,65E+13 60564,32 2,30 3,45 
12 F_F3 100000 3,33E+08 7,26E+07 1,21E+07 2,42E+11 2254,66 1,46 2,20 
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The deformed shape and the pushover curve (in Figure 4.5) obtained leading 

to the collapse the previous structure are shown in Figure 4.4,. 

   
Figure 4.4: Last pushover step and relative shear diagram. 

 
Figure 4.5: Pushover curve. 
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In the following Figures 4.6 – 4.8 and Tables 4.4 - 4.5, the representation of the 

characteristics of the stress in the deformable sections are reported. 

 
Figure 4.6: Axial force diagram. 

 
Figure 4.7: Shear force diagram. 
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Figure 4.8: Moment diagram. 

Table 4.4: Joint displacement. 

Joint U1 U2 U3 R1 R2 R3 
Text [mm] [mm] [mm] Radians Radians Radians 

1 0 0 0 0 0 0 
2 0,003594 0 -0,02085 0 2,37E-06 0 
3 0,008923 0 -0,03266 0 3,01E-06 0 
4 0,01536 0 -0,03593 0 4,82E-06 0 
5 0 0 0 0 0 0 
6 0,004002 0 -0,02505 0 1,5E-06 0 
7 0,008842 0 -0,03881 0 1,69E-06 0 
8 0,013385 0 -0,04376 0 2,48E-06 0 
9 0 0 0 0 0 0 

10 0,004949 0 -0,02422 0 -1,7E-08 0 
11 0,008715 0 -0,03737 0 -3,2E-07 0 
12 0,009669 0 -0,04098 0 -2,2E-06 0 
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Table 4.5: Element forces in frames. 
Frame Station P V2 M3 

Text [mm] [N] [N] [Nmm] 
1 900 -106805 508,74 2358143 
1 1650 -101657 508,74 1976589 
1 2400 -96508,2 508,74 1595034 
2 650 -68454,7 -4104,99 -2547790 
2 1400 -63306,2 -4104,99 530954 
2 2150 -58157,7 -4104,99 3609698 
3 650 -24438,3 -4386,6 -1779798 
3 1400 -19289,8 -4386,6 1510149 
3 2150 -14141,4 -4386,6 4800096 
4 900 -178509 6244,4 8109925 
4 1650 -171301 6244,4 3426625 
4 2400 -164093 6244,4 -1256674 
5 650 -110383 1256,5 1369150 
5 1400 -103175 1256,5 426777 
5 2150 -95967,5 1256,5 -515596 
6 650 -49299,8 -576,11 1394132 
6 1400 -42091,9 -576,11 1826211 
6 2150 -34884 -576,11 2258290 
7 0 -155473 5246,86 6280896 
7 1200 -145588 5246,86 -15338 
7 2400 -135703 5246,86 -6311572 
8 650 -90719 10848,49 7703996 
8 1400 -84540,8 10848,49 -432374 
8 2150 -78362,6 10848,49 -8568745 
9 650 -32002,9 8962,7 3997859 
9 1400 -25824,7 8962,7 -2724168 
9 2150 -19646,5 8962,7 -9446194 

10 500 3613,73 -9667,42 718826,9 
10 1000 3613,73 -205,39 3187029 
10 1500 3613,73 9256,63 924218,1 
11 700 6601,63 -5465,72 5771982 
11 1200 6601,63 3996,31 6139334 
11 1700 6601,63 13458,34 1775672 
11 2200 6601,63 22920,36 -7319003 
12 500 -718,4 -15333,3 -876889 
12 1000 -718,4 -5871,24 4424236 
12 1500 -718,4 3590,79 4994348 
13 700 -885,79 -4089,6 7695497 
13 1200 -885,79 5372,43 7374790 
13 1700 -885,79 14834,45 2323070 
13 2200 -885,79 24296,48 -7459663 
14 500 -5386,6 -6395,49 -886439 
14 1000 -5386,6 -22,56 718072,4 
14 1500 -5386,6 6350,37 -863882 
15 700 -7962,7 -8767,34 -1545518 
15 1200 -7962,7 -2394,41 1244918 
15 1700 -7962,7 3978,52 848888,8 
15 2200 -7962,7 10351,45 -2733606 



Gerardo Carpentieri  Matr. 06201/00179 

150 

 



 

 

 

 151 

5. A novel equivalent–frame analysis model 

5.1 Introduction 

The present model is based on a lumped-plasticity approach which allows for 

simulating the keys features of the nonlinear behaviour of structures basically 

corresponding to the various failure modes already described in section 3.1. 

The model is firstly formulated in the linear range. Section 5.2 presents 

analytical details about the closed-form expression of a 1D frame element 

which is employed in the model under consideration. Since it is intended at 

simulating the behaviour of both walls and spandrels it should also model the 

so-called panel zone. Thus, two fully rigid parts are introduced at the ends of 

this frame-like element, as commonly accepted in equivalent frame models for 

masonry structures.  

Moreover, since this is a lumped-plasticity model, some springs components 

are introduced in the model for simulating the nonlinear behaviour of the 

materials. Thus, section 5.3 describes the key aspects of the process of those 

springs for realising a nonlinear procedure according to the secant method 

[45]. Some basic principles of the follow theory of plasticity are briefly 

recalled these in and their application to the case of masonry structures is also 

outlined.  

Finally, details about numerical code developed in MatLab® are reported.  
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5.2 Frame element formulation 

The masonry wall is modelled by the use of equivalent frame structures. Every 

frame (shown in Figure 5.1) uses deformable elements (for piers or 

spandrels), rigid elements (for the nodal zones), local springs (for modeling 

the nonlinear behaviour). 

 
Figure 5.1: Truss element. 

5.2.1 Description of the flexible part 

The flexible tract is used for modelling the deformable part of the masonry 

wall. This element is, therefore, a simple frame with lumped releases at the 

end. For this element is simple to write the deformability coefficient: 
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(5.3)

 
At this point the coefficients of stiffness of only the deformable part are: 

 2
ijjiij

ji
ijW








;
(5.4)
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 2
ijjiij

ij
jiW








;
(5.5)

 

 2
ijjiij

ij
ijV








;
(5.6)

 

 L
UW

U jiij
ij




.
(5.7) 

5.2.2 Assembly of the rigid segments 

It should be, however, calculate the moments at the ends of the frame, 

including the presence of the rigid traits. This can be done using a matrix 

operation that involves the use of a matrix of passage. The aim is to link the 

displacements of the external nodes (i and j) with the displacements of the 

internal nodes (i’ and j'). Knowing the above factors the stiffness matrix of 

only the deformable part ( 'K ) can be defined.  

For the deformable part, it’s valid a relationship like this: 

 0'''' fvKf  .
 

(5.8)

The vector of nodal displacements of the deformable part will be: 

  Tjjjiii vuvuv ',',',',',''  .
 

(5.9)

The displacements of the deformable part obtained from the previous 

displacements at the ends of all the frame are: 

 ii uu ' ;
 

(5.10)

 Lrvv iiii  ' ; (5.11) 

 ii  ' ; (5.12) 

 jj uu ' ; (5.13) 

 Lrvv jjjj  ' ; (5.14) 

 jj  ' . (5.15) 
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Ultimately, the following transformation matrix is obtained: 
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(5.16)

 

Substituting v' in the previous report and multiplying the transpose of the 

transformation matrix: 

 00 ''''' ffTvTKTfTf TTT  .
 

(5.17)

Substituting again: 

 00
''ffvKf  .

 
(5.18)

In fact to the previous has been added the vector of the nodal action present 

both on the deformable part and on the rigid part. In particular: 

 

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(5.19)
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5.2.3 Final formulation 

Ones obtained the stiffness matrix of each frame elements it is possible also to 

obtain the stiffness matrix of the entire structure [51]. This scope is reached 

by the rotation of the stiffness matrix of each frame element (with the passage 

from the local system to the global system). Every matrix is therefore 

assembled after a their expansion. At the end of this operation, the ultimate 

stiffness matrix can be obtained by the overwrite of the boundary conditions. 

Finally, this relation can be obtained: 

 0FsKF  ,
 

(5.20)

where: 

- F  is the vector of the nodal forces of the entire structure; 

- K  is the stiffness matrix of the entire structure; 

- s  is the vector of the nodal displacements of the entire structure; 

- 0F  is the vector of the nodal actions of the entire structure. 

The previous relation can be inverted to obtain the unknown displacement of 

the nodes: 

  FFKs  1 .
 

(5.21)

At this point, through simple relations, the strain on each frame elements can 

be obtained with the same relations of the section 5.2.2. 
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5.2.4 Validation within the linear range 

In the following section there is a comparison between the results obtained by 

the MatLab® computer code and the modelling carried out in SAP2000® [52].  

Firstly same tests were performed on simple structures and the results were 

compared in terms of nodal displacements, both in MatLab® code and in 

SAP2000®. In addition, for some cases have been obtained exact analytical 

solutions by solving the Timoshenko problem even using Mathematica. 

The simple tests focused on three types of structures: 

1) beam fixed at the base and subjected to a force on the top (Figure 5.2); 

2) simply supported beam and subjected to a uniformly distributed load 

(Figure 5.3); 

3) portal with one floor and a span with a distributed load on the beam and a 

horizontal force on the top (Figure 5.4); 

4) masonry wall exposed in Commentary No. 21745 and described in the 

previous paragraph 2.1.4. 

For each of the above types have been provided three cases: 

1) structure with elastic beam elements;  

2) structure with beams and rigid traits;  

3) structure with beams, rigid traits and rotational and shear springs. 

The tests are described in the following figures from which one can deduce the 

geometry and applied loads. In particular, the elastic moduli are equal to: 

 MPaE 726 ; MPaG 23,279 . (5.22) 

The  springs stiffness are equal to: 

 Nmmki
910 ; mmNkvi /109 . (5.23) 
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Figure 5.2: Test 1 – 2 – 3. 

 
Figure 5.3: Test 4 – 5 – 6. 
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Figure 5.4: Test 7 – 8 – 9. 
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The differential problem of Timoshenko uses the following equations: 

 03

3

 q
dz
dEI 

; 2

2

dz
d

GA
EI

dz
dv 

  . (5.24) 

The shear and the moment are: 

 2

2

dz
dEIT 
 ; 

dz
dEIM 
 . (5.25) 

For the case of the beam fixed at the base and with a force to the end, the 

boundary conditions are: 

   00 zv ;   00 z . (5.26) 

   0 LzM ;   FLzT  . (5.27) 

The solutions are: 

   z
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(5.28)
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2
22

 ; 
(5.29) 

   xFLFzM  ; 
(5.30) 

   FzV  . (5.31) 

In the case of a beam with a uniform load, the conditions are: 

   00 zv ;   0 Lzv . (5.32) 

   00 zM ;   0 LzM . (5.33) 

The solutions are: 
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(5.34)
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where: 

- 2LAG
IE



  .   (5.38) 

The previous formulas can be used for check the results from the test 1 and 3 

and they give the same numbers of the MatLab® and SAP2000® modelling. In 

the following Tables 5.1 – 5.3 are reported the comparisons for each test. 
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Table 5.1: Test 1-9. 

Test Joint 

MatLab® SAP2000® Percentage changes 

u v fy u v fy u v fy 

[mm] [mm] [] [mm] [mm] [] [%] [%] [%] 
1 2 1,1837 -0,1116 0,0006 1,1837 -0,1116 0,0006 0,00 0,00 0,00 
2 2 0,3645 -0,1116 0,0003 0,3640 -0,1116 0,0003 0,14 0,00 -1,81 
3 2 2,3690 -0,1116 0,0013 2,3692 -0,1116 0,0013 -0,01 0,00 0,00 
4 1 0,0000 0,0000 -0,0038 0,0000 0,0000 -0,0038 - - 0,00 
4 2 0,0000 0,0000 0,0038 0,0000 0,0000 0,0038 - - 0,00 
5 1 0,0000 0,0000 0,0018 0,0000 0,0000 0,0018 - - 0,00 
5 2 0,0000 0,0000 -0,0018 0,0000 0,0000 -0,0018 - - 0,00 
6 1 0,0000 0,0000 0,0141 0,0000 0,0000 0,0142 - - -0,70 
6 2 0,0000 0,0000 -0,0124 0,0000 0,0000 -0,0125 - - 0,80 
7 1 0,4544 -0,8688 0,0045 0,4544 -0,8688 0,0045 0,00 0,00 0,67 
7 2 0,0645 -0,8741 -0,0043 0,0645 -0,8741 -0,0043 0,00 0,00 0,92 
8 1 0,4006 -0,8683 0,0026 0,4006 -0,8683 0,0026 0,00 0,00 -0,38 
8 2 -0,2359 -0,8745 -0,0026 -0,2355 -0,8745 -0,0026 0,17 0,00 -1,17 
9 1 0,9349 -0,8685 0,0139 0,9370 -0,8685 0,0139 -0,22 0,00 0,07 
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Table 5.2: Test 10-11. 

Test Joint 
MatLab® SAP2000® Percentage changes 

u v fy u v fy u v fy 
[mm] [mm] [] [mm] [mm] [] [%] [%] [%] 

10 4 0,3763 -1,0023 -0,0002 0,3763 -1,0023 0,0002 0,00 0,00 0,02 
10 5 0,3844 -1,1959 -0,0001 0,3844 -1,1959 0,0001 0,00 0,00 0,03 
10 6 0,3934 -1,0799 0,0000 0,3934 -1,0799 0,0000 0,00 0,00 2,82 
10 7 0,7362 -1,5602 -0,0002 0,7362 -1,5602 0,0002 0,00 0,00 -0,20 
10 8 0,7397 -1,8455 -0,0001 0,7397 -1,8455 0,0001 0,00 0,00 0,22 
10 9 0,7421 -1,6591 0,0000 0,7421 -1,6591 0,0000 0,00 0,00 -0,57 
10 10 1,0788 -1,7242 -0,0003 1,0788 -1,7242 0,0003 0,00 0,00 0,14 
10 11 1,0116 -2,0534 -0,0001 1,0116 -2,0534 0,0001 0,00 0,00 -0,12 
10 12 0,9351 -1,8154 0,0000 0,9351 -1,8154 0,0000 0,00 0,00 0,01 
11 4 0,1221 -1,0302 -0,0001 0,1243 -1,0324 0,0001 -1,78 -0,21 -0,52 
11 5 0,1385 -1,1531 0,0000 0,1403 -1,1497 0,0000 -1,27 0,30 0,39 
11 6 0,1651 -1,1064 0,0000 0,1661 -1,1086 0,0000 -0,60 -0,19 14,99 
11 7 0,2729 -1,6064 -0,0001 0,2676 -1,6104 0,0001 1,96 -0,25 7,07 
11 8 0,2719 -1,7777 0,0000 0,2685 -1,7709 0,0000 1,25 0,38 14,05 
11 9 0,2682 -1,6997 0,0000 0,2660 -1,7043 0,0000 0,83 -0,27 8,10 
11 10 0,4650 -1,7659 -0,0002 0,4259 -1,7719 0,0002 9,19 -0,34 10,23 
11 11 0,3750 -1,9885 0,0000 0,3312 -1,9713 0,0000 13,24 0,87 - 
11 12 0,2756 -1,8564 0,0001 0,2296 -1,8714 -0,0001 20,01 -0,80 - 
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Table 5.3: Test 12. 

Joint 

MatLab® SAP2000® Percentage changes 

u v fy u v fy u v fy 

[mm] [mm] [] [mm] [mm] [] [%] [%] [%] 
4 8,19956 -0,86068 -0,00325 8,19513 -0,86373 0,00326 0,05 -0,35 -0,04 
5 8,21489 -1,38848 -0,00103 8,21040 -1,38419 0,00102 0,05 0,31 0,41 
6 8,23328 -0,97314 0,00008 8,22875 -0,97559 -0,00009 0,06 -0,25 7,23 
7 14,43062 -1,34038 -0,00211 14,40649 -1,34616 0,00209 0,17 -0,43 1,04 
8 14,42899 -2,14719 -0,00059 14,40532 -2,13908 0,00059 0,16 0,38 0,89 
9 14,42596 -1,49028 0,00010 14,40271 -1,49493 -0,00010 0,16 -0,31 -0,58 

10 17,45414 -1,47810 -0,00220 17,36101 -1,48587 0,00227 0,54 -0,52 -3,19 
11 17,41224 -2,38628 -0,00019 17,31774 -2,37522 0,00011 0,55 0,47 - 
12 17,36432 -1,63212 0,00159 17,26855 -1,63856 -0,00177 0,55 -0,39 - 
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5.3 Nonlinear behaviour 

5.3.1 Introduction and general principles 

In the classic formulation of the Finite Element problem the following 

hypotheses are assumed: linear and isotropic elastic material, small 

displacements. 

Furthermore it is assumed that the nature of the boundary conditions remains 

unchanged during the application of loads. Under these assumptions, the 

equation of equilibrium which is used for static analysis of the problem is: 

 fuK  .
 

(5.39)

Where: 

- K  is the stiffness matrix of the structure discretised with a Finite 

Element mesh;  

- u  is the vector of nodal displacements;  

- f  is the vector of loads. 

In the case of linear analysis, the vector of displacement u  is a linear function 

of the vector of loads f . If it applies a load vector of the type f   

(multiplied by a constant factor, α) the solution of the problem in terms of 

displacements is equal to u . 

If the above property of linearity is not valid, there is the problem of a 

nonlinear analysis. The nonlinear case, in relation to the assumptions that are 

adopted can be classified as show in the Table 5.4. 

In particular, in the case of masonry, the material has characteristics of 

nonlinearity (in terms of the constitutive low stress-strain). The main purpose 

of the study of a continuous body with the finite element method is to find a 

solution by equilibrium of the body subjected to external loads. 
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Table 5.4: Classification of nonlinear analysis [45]. 

Type of analysis Description Typical 
formulation used 

Stress and strain 
measures 

Materially-
nonlinear-only 

Infinitesimal 
displacements and 
strains; the stress-
strain relation is 

nonlinear 

Materially-
nonlinear-
only(MNO) 

Engineering stress 
and strain 

Large 
displacements, 

large rotations, but 
small strains 

Displacements and 
rotations of fiber 

are large, but fiber 
extensions and 
angles changes 

between fibers are 
small; the stress-

strain relation may 
be linear or 
nonlinear 

Total Lagragian 
(TL) 

 
Updated Lagragian 

(UL) 

Second Piola-
Kirchhoff stress, 
Green-Lagrange 

strain 
Cauchy stress, 
Almansi strain 

Large 
displacements, 

large rotations, and 
large strains 

Fiber extensions 
and angle changes 
between fibers are 

large, fiber 
displacements and 
rotations may also 
be large; the stress-
strain relation may 

be linear or 
nonlinear 

Total Lagragian 
(TL) 

 
Updated Lagragian 

(UL) 

Second Piola-
Kirchhoff stress, 
Green-Lagrange 

strain 
Cauchy stress, 

Logarithmic strain 

Each different nonlinearity must be studied in order to formulate appropriate 

methods that can be adopted to obtain a prediction of the nonlinear behavior 

of the structural system. In the case of nonlinearity caused from the 

mechanical properties of the material it may be convenient to switch to an 

incremental procedure: 

 fuK  .
 

(5.40)

In this way it’s possible to adopt the simple linear solution in an iterative 

manner, but changing from one and the next step, the stiffness matrix of the 

system. In particular, when the load is applied on the structure and it has a 

progressive damage, the stiffness of the system decreases. 
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5.3.2 General principles 

In this chapter a simple plan masonry structure shows in the Commentary No. 

21745 is studied. This structure was discussed in the past, in very simply 

mode and providing a behaviour of equivalent shear type frame into the spirit 

of the POR method. 

This modelling, in the previous paragraphs, has been improved taking:  

1) plan spandrels not more infinitely rigid: in this way, it was possible to 

obtain a shear type frame made of frame elements with rigid ends of the 

lines that schematise the nodal areas;  

2) collapse mechanism of masonry elements not only for diagonal shear but 

also for the sliding shear and flexural failure. 

In the previously obtained modelling, however, the possibility of a normal 

stress model variable during the analysis has been considered. The 

assumption of constant axial forces, however, is acceptable in the case of small 

structures and with few floors. 

Finally, the method of using the link elements has proved particularly suitable 

to model the plastic behaviour of wall elements and simple enough to apply. 

For this reason, in the next chapter 6, also this type of modelling is applied to a 

structure that has been really tested in the laboratory and they are compared 

the results of this modelling with the related experimental results obtained 

during the test. 
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5.3.3 Application to the case of masonry 

A nonlinear version of the program in MatLab® must be written. It must have 

concentrated deformation to simulate the progress of the damage in the 

elements (lumped plasticity). 

Remaining firstly in an elastic structure, it needs to write the terms of the 

stiffness matrix of the structure in Figure 5.1, consisting of two rigid traits at 

the ends and once deformable with deformation concentrated at its ends (ki 

and kj for rotational stiffness, kvj and kvi for shear stiffness). 

This problem can be solved, for example, by the method of unitary force. In 

particular the terms of the matrix deformation can be written. For example, by 

the application of a unitary moment at one end, and by knowing the moment 

diagram (triangular), the moment at the first spring can be obtained. 

It must, therefore, to write the work done by the unitary action to derive the 

rotation, which will be the general term of matrix deformation. 

Alternatively the stiffness approach can be used. For example, by assigning an 

unitary rotation at one end (see Figure 5.5). 

Multiplying this rotation (unitary) to the length of the trait, the vertical 

displacement of the trait is obtained (for example, amounted to "a"). The 

moments that are activated at the ends of the deformable section can be 

achieved. Knowing also the stiffness of the springs at the ends of the 

deformable section, through a decomposition and with the writing 

equilibrium relations, it can be identified the forces that are generated at the 

ends (moments and shear). 
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Figure 5.5: Scheme 1: unitary rotation at the joint i. 

At this point the terms of the type Wij can be obtained. Please note that Wij is 

the moment that born in "i" to effect of an unitary rotation in "i". In practice, 

proceeding in this way, the stiffness matrix K as a function of the various 

concentrated stiffness can be written. 

Since the structure is asymmetric in general, it needs assign a rotation at the 

other extreme and calculate the term Wji (or simply need to swap the terms 

"a" and "b", length of rigid traits). Another model to consider is the one with 

the unitary translation of one of the two traits (shown in Figure 5.6). 

 
Figure 5.6: Scheme 2: unitary displacement at the joint j. 

The objective is to generate a stiffness matrix for the frame m–th. This matrix, 

therefore, will depend on the size and stiffness of the traits: 

   ukkkkbaKf vjviji  ,,,,, .
 

(5.41)

The terms "a" and "b" do not change during the analysis. Instead, k are 

parameters that vary according to the local stress state. It will be possible to 

relax this rigidity to take account the progressive damage in masonry of the 

various elements. Assigned displacement ( u ), through the previous report, a 

forecast (prediction) of force ( f ) can be obtained. 
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The idea is that, since a stress is performed an analysis with very large 

stiffness. Next, with an increment of load, for example, it comes at a point 

outside the domain (point i in Figure 5.7). 

At this point there is a part that can describe in the linear range (i.e. that intra-

domain, which is sufficient to describe the elastic response), and then it needs 

to find ways to relax the stiffness for return the first point reached in the 

domain. A rule type of normality can be used. 

 
Figure 5.7: Behaviour near the domain. 

For example, on the single element, the following increase in forces initially 

obtained using the elastic stiffness matrix is valid: 

 uKf el  .
 

(5.42)

If it turns out that this increase of forces is excluded, there are two options. 

The first is to define a plastic, displacement leaving the elastic stiffness matrix: 

  plelNL uuKf  .
 

(5.43)

It should, however, maintain the target that the state of the total stress is on 

the border: 

   0 NLffF .
 

(5.44)

When the point is not acceptable (outside the domain): 

   0 ffF .
 

(5.45)

In reality the previous procedure is impractical, and therefore might want to 

change the stiffness matrix in a matrix of tangent stiffness (secant on the step) 
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so that it preserves a fixed total displacement. The matrix can be obtained by 

relaxing the secant deformation concentrated: 

 uKf tNL  .
 

(5.46)

In the linear analysis of the single load step (Analysis.m) is also built the 

stiffness matrix (Stiffnessmatrix.m). This last function, based on data loaded 

before and the results from other functions, generates the matrix of element, 

the vector of actions, finds the nodes to which the element is connected, the 

inclination angle in the plan. 

In the analysis will follow the next steps: generation of matrices, rotation 

matrices, matrix assembly, analysis of the nodal forces (equivalent to external 

forces multiplied by a multiplier factor), application of boundary conditions, 

matrix inversion, analysis of displacement, assignment of these displacements 

to the elements, strain analysis. 

The nonlinear correction, before of all, must proceed incrementally. First must 

be apply the vertical load and then a process of incremental load for seismic 

actions. This thing can be done simply by assuming that the multiplier of the 

nodal action is variable. The nonlinear procedure must start from the 

elements with extreme rigid but without the springs (shown in Figure 5.8). 

 
Figure 5.8: Frame in elastic range. 

The nonlinear process might work, first making an elastic prediction and then 

a plastic correction. Starting from the elastic stiffness matrices of each element 
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(indicated with )(e
el

K ), by an assembly operation, the elastic stiffness matrix of 

the structure (
el

K ) can be obtained. 

Under initially only vertical loads will be possible to calculate the 

displacements (vertical): 

 0

1 QKv
elel   .

 
(5.47)

The vector of the vertical loads is obtained by assembling the individual 

elements: 

 
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eQQ )(

00
.
 

(5.48)

 The previous is a prediction of elastic displacements with elastic stresses, 

because each element can be calculated from the previous (with a process for 

extracting). The elastic displacements and the corresponding forecast in terms 

of forces are:  

  jjjiii
ee

el
e

el
e

el MVNMVNQvKQ ,,,,,)(
0

)()()(  .
 

(5.49)

At this point it needs to understand if the obtained forces from the previous 

elastic prediction are admissible or must be changed to take into account the 

damage of structure. Therefore, eventual plastic correction should be 

considered. A check of the previous forecast must be conducted. 

From the previous carrier it is possible to extrapolate the couples (N, M) and 

(V, N), assuming decoupled from mechanisms shear and flexural. However it is 

noteworthy that the check should be carried out in the end points of each 

beam (nodal actions indicated in Figure 5.9). 
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Figure 5.9: Nodal actions in the frame. 

The problem is easily solved by calculating the stresses at the desired points, 

remembering that, in general, the laws of moment and normal force are, for 

example:  

  
22

2zqzLq
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MM
MzM ji
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





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


 ;

 
(5.50)

 

   zpNzN i  . (5.51) 

At this point the couples that must be checked with the domains can be 

obtained:  

  ii MN , ,  jj MN , .
 

(5.52)

 If the couples are internal to the previous domain do not need to change 

anything. If, instead, they are out of domain it needs to change something. 

Only for vertical loads, in fact, should almost always be a situation within the 

domains. Only the floor spandrels, if it does not establish a minimum of 

reinforce, it could have a situation out of the domain. 

If the point should be outside the domain it needs to be back inside by using 

appropriate techniques. It can be reasoned in a manner similar to the 

plasticity. It can first obtain a no-dimensional diagram μ, ν (Figure 5.10). 
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Figure 5.10: Elastic prediction and plastic correction. 

In particular, in this case is: 

 
mflt

M

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(5.53)

 

 
mflt

N


 . (5.54) 

From the point of view of energy, the work is given by: 

 uNML   ,
 

(5.55)

substituting: 
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(5.56)

 
If there is a point outside the borders of the domain it must return to the 

surface should follow the shortest route, or going perpendicular. 

For the domain is known the equation of the curve, which is of type: 

   01
2

 f .
 

(5.57)

 The normal unit vector can be calculated by the derivatives of the above 

function with respect to two variables: 

 2
1
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
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(5.58)
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(5.59) 

Consider the predicted elastic stresses out of the domain:  

  el
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el
i MN , ,  el

j
el
j MN , ,

 
(5.60)

 the characteristics of the stress that take into account the plastic correction 

are the following: 

  pl
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(5.61)

 From the previous values, with a reverse, can be defined the moments and 

normal plastic stress to the end of the frame: 
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(5.62)

 The previous values are present in a vector that must be obtainable from the 

following relationship:  
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(5.63)

 The idea is to find a secant stiffness matrix. Consider, for example, the 

following one dimensional loading process in Figure 5.11. 

 
Figure 5.11: Analysis of the secant stiffness matrix. 

At the beginning of the loading process is known force and initial stiffness. A 

certain displacement from the elastic forecast can be had. However the point 

has a force Q0 too high which should be reduced until the force Qpl. This 
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research, therefore, the new stiffness that corresponds to the force (which will 

be less than the previous). 

A second step is reached, however, the force Q0 to get the actual result (in 

terms of displacements) of nonlinear analysis. This can be done considering 

the initial stiffness matrix and applying the next increment of load in an 

iterative way. 
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5.3.4 Implementation of the numerical procedure 

5.3.4.1 General comments 

This section reports an analysis code created with MatLab® language. The 

major good thing of this code is the possibility to implement all the standard’s 

prescription [6] about masonry. This standards, in fact, recommend to use a 

nonlinear implementation with the use of finite macro-elements. By the use of 

the following code, it’s available a control about the failure of the elements 

both in sliding shear and in flexural. This checks can be done with a control of 

the relative displacement on the top of the deformable element in respect to 

the limit displacement defined by the [6] and exposed in section 3.1.4. 

This code runs a nonlinear analysis of an object schematised as a frame with 

some rigid traits and spring with variable stiffness at the ends (i.e. Figure 

5.12). 

 
Figure 5.12: Real wall (on the left) and relative frame modelling. 

These hinges have a certain behavior in a normal stress versus bending 

moment domain (useful to outline the flexural crisis), and in a shear versus 

normal stress domain (useful to outline the shear crisis).  
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5.3.4.2 Outline of the procedure 

The program written in MatLab® analyses the same wall as described in 

Commentary No. 21745 (see Figure 5.13). In the Data folder there are the 

essential ingredients of a finite element model. First of all there are the 

coordinates of the nodes (Coords.txt) listed in Table 5.5. Initially the program 

was designed in a three-dimensional space. However now this program can be 

used for the analysis of two dimensional walls. 

 
Figure 5.13: Wall prospect and relative frame model. 

Table 5.5: Points’ coordinates. 

Point x y z 
[mm] [mm] [mm] 

1 0,0 0,0 0,0 
2 2200,0 0,0 0,0 
3 4500,0 0,0 0,0 
4 0,0 0,0 3050,0 
5 2200,0 0,0 3050,0 
6 4500,0 0,0 3050,0 
7 0,0 0,0 5850,0 
8 2200,0 0,0 5850,0 
9 4500,0 0,0 5850,0 

10 0,0 0,0 8200,0 
11 2200,0 0,0 8200,0 
12 4500,0 0,0 8200,0 
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The displacements and the nodes uses the reference system shown in Figure 

5.14. Moreover, in the Connectivity.txt file there are the nodes’ index at the 

extremities of each frame (see Table 5.6).  

 
Figure 5.14: Coordinate and displacement system. 

In the wall example of the Commentary, which was analysed using a method 

similar to the SAM method, there are three floors and two openings on each 

floor. The schematic equivalent frame consists of a three–storey frame and 

two bays. The coordinates of 12 nodes must be defined. Then there is the 

Frame.txt file that contains the elements properties (see Table 5.7). 
Table 5.6: Truss connectivity. 
Truss i j 

1 1 4 
2 2 5 
3 3 6 
4 4 5 
5 5 6 
6 4 7 
7 5 8 
8 6 9 
9 7 8 

10 8 9 
11 7 10 
12 8 11 
13 9 12 
14 10 11 
15 11 12 
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For each element the size of t and L (rectangular section, thickness and length) 

are reported. Also fc is defined and represents the maximum vertical 

compression stress. Then, the shear strength fv0 in the absence of 

compression, the friction factor (µ), the weight per unit volume (γg) can be 

defined. For the rigid tract, ri and rj, are the no-dimensional length and equal 

to: 

 L
ari  ;

 L
cr j  .

 (5.64)
 

Table 5.7: Truss characteristics. 

Truss 
t L fc fv0 µ γg ri rj q E G 

[mm] [mm] [MPa] [MPa] [] [N/mm3] [] [] [N/mm] [MPa] [MPa] 

1 500 1000 3 0,11 0,4 0,000014 0,295 0,213 0 726 121 

2 500 1400 3 0,11 0,4 0,000014 0,295 0,213 0 726 121 

3 500 1200 3 0,11 0,4 0,000014 0,000 0,213 0 726 121 

4 500 1300 3 0,11 0,4 0,000014 0,227 0,318 10 726 121 

5 500 1300 3 0,11 0,4 0,000014 0,304 0,261 10 726 121 

6 500 1000 3 0,11 0,4 0,000014 0,232 0,232 0 726 121 

7 500 1400 3 0,11 0,4 0,000014 0,232 0,232 0 726 121 

8 500 1200 3 0,11 0,4 0,000014 0,232 0,232 0 726 121 

9 500 1300 3 0,11 0,4 0,000014 0,227 0,318 10 726 121 

10 500 1300 3 0,11 0,4 0,000014 0,304 0,261 10 726 121 

11 500 1000 3 0,11 0,4 0,000014 0,277 0,085 0 726 121 

12 500 1400 3 0,11 0,4 0,000014 0,277 0,085 0 726 121 

13 500 1200 3 0,11 0,4 0,000014 0,277 0,085 0 726 121 

14 500 400 3 0,11 0,4 0,000014 0,227 0,318 10 726 121 

15 500 400 3 0,11 0,4 0,000014 0,304 0,261 10 726 121 

Table 5.7 reports an example of the input data required for describing the 

geometrical and mechanical parameters of the frames. In particular, q is the 

transverse load on the truss. Finally, the modulus of elasticity in compression 

(E) and shear (G) are displayed. Then there is the Connectivity.txt file that says 

which are nodes that connect each beam (see previous Table 5.6). Then there 

are the forces applied to the nodes (in Forces.txt file and reported in  

Table 5.8). Horizontal forces are applied, because the vertical loads have 

already been applied on the truss with distributed loads. 
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Table 5.8: Forces on the wall. 

Point Fx Fy Fz 

1 0,0 0,0 0,0 
2 0,0 0,0 0,0 
3 0,0 0,0 0,0 
4 1000,0 0,0 0,0 
5 2000,0 0,0 0,0 
6 1000,0 0,0 0,0 
7 1000,0 0,0 0,0 
8 2000,0 0,0 0,0 
9 1000,0 0,0 0,0 

10 1000,0 0,0 0,0 
11 2000,0 0,0 0,0 
12 1000,0 0,0 0,0 

The last input is the file Restraints.txt. For each node, the degrees of freedom, 

active or bound, are imposed (Table 5.9).  
Table 5.9: Boundary condition. 

Bond u v z fx fy fz 

1 1 0 1 0 1 0 
2 1 0 1 0 1 0 
3 1 0 1 0 1 0 

Legend: 0 = "free"; 1 = "fixed". 

Since the program is generally designed to operate in three dimensions, each 

node has six degrees of freedom. In particular, there are the three translations 

(u, v, z, respectively along x, y, z) and three rotations (fx, fy, fz, respectively, 

around the three axes x, y, z). It requires a value of 1 if the degree of freedom 

is bound (or fixed) and 0 if the degree of freedom is free (or active) or if it’s 

not defined. The program begins  starting the file Main.m. 

The program is designed to apply forces to steps. In practice, the analysis is 

done applying forces with a multiplication factor (Δλ). So, there are several 

load steps and, step by step, the displacements are added. 
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The program is done in this manner because it must use these first steps of 

elastic load to make a prediction. The purpose is to obtain, however, a 

nonlinear analysis. In this analysis, in a certain step, it can make a prediction 

and then adjust the elastic stiffness matrix, taking into account the constitutive 

laws in order to have the plastic correction. 

In practice the stiffness must be reduced. For example, for to do the non-

elastic analysis in a beam, the elastic prediction is to obtain the diagram of 

moments. At this point, knowing of the constitutive link of the beam, as 

curvature vs. moment of each section, it can be associated each moment (bi 

triangular diagram) to the value of the curvature (nonlinear diagram). 

To calculate, at this point, the stiffness of the truss, that is its deformability 

(αij) it can integrate the curvatures for the unitary moment. For each step it is 

necessary to make an elastic prediction and then a correction to consider the 

plasticity. 

It needs to change the K in an iterative cycle that reaches to convergence. After 

the analysis, in output, there are the displacements (three components of 

displacement for each node). The displacements are ordered as y, z, f. The 

displacements along z are negative, because downward. 

The mechanical properties of materials are loaded separately for each beams. 

The code obtains the weights of the elements knowing volumes and specific 

weights. For this reason it can have displacement even without  the vertical 

loads. Once loaded the data with the input functions it must use them in other 

functions. For example, the different stiffness matrix of each frame (file 

Assembly.m) must be assembled. The most important function is the one that 

performs the analysis (Analisys.m). StiffnessMatrix.m is the function delegated 

to write the stiffness matrix. Basically, the written code, generates the stiffness 

matrix for each element. This matrix is computed first in the local truss 

system. In this function, they are identified the indices of the nodes of each 
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truss (for uploading the file attempts Connectivity.txt). Then they are obtained 

the length and angle (in the two plan) of the truss.  

In fact, knowing the indices of the nodes in ends of the truss, also the 

coordinates of these nodes are known. For to calculate the matrix of the truss, 

the shear stiffness (GA) and flexural stiffness (EI) must be obtained. In the 

following there are the coefficients of deformation used to define the matrix of 

the truss. Ultimately, this function provides, in addition to the stiffness matrix, 

the vector of loads equivalent to the forces, the indices to which the generic 

truss is connected and the angle of inclination. 

The indexes are used to make the assembly, the angle is used to make the 

rotation. Then there is the function Rotation.m. This rotates the matrix related 

to each truss. Finally, Assembly.m is done with the assembly of the stiffness 

matrix of the individual truss (suitably expanded) to obtain the stiffness 

matrix of the whole structure. The assembly is done classically going to put 

the four minors in which is divided the stiffness matrix of each individual truss 

in the appropriate places of the stiffness matrix of the total structure. 

The same is done for the vector of nodal forces. After the assembly, the forces 

are multiplied by the factor λ (called force multiplier). Only the nodal forces 

are multiplied by this factor (seismic actions applied to the various floors).  

There is a table of type Restrain in which, for each node, it sees if they are 

bound or not (using the relative input file). If the node is bound to a certain 

degree of freedom, the stiffness matrix of the structure obtained previously (in 

its basic configuration) is overwritten in the line and column of the degree of 

freedom constrained. Basically it puts all zeroes except for a unitary term in 

the main diagonal (this is called the equation of constraint). 

When the analysis is made, among other results, the displacements of the 

nodes corresponding to the applied forces are obtained. In fact, with an 

increase of forces, an increase of displacements is reached. Once it has done 

the analysis of the elements, it can pass to post processing. This is a table that, 
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for each element, reports the force vector. This table has got seven columns 

and as many rows as the elements. 

In the first column there is the index of the element, in the other columns 

there are other forces. ElForceTable provides the result of all the nodal forces. 

This shows, for each element, the normal stress, shear and bending moment.  

The first step is the linear validation with different loads and forces, with rigid 

traits and normal traits, comparing the results obtained with a model made 

with SAP2000®. 

The second thing to do is the validation of the plastic correction. Imagine to 

have put an increases of load. Firstly all the vertical loads must be applied. 

They are then placed horizontal seismic forces that are grown. A procedure in 

control of displacements can be done. 

Suppose that in an ideal process of nonlinear load, it arrives to a certain 

extent. A tangent or secant stiffness matrix can be used. From this, it can 

impose a new increase of displacements and the elastic prediction can be 

obtained. For the i-th step of loading: 
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el
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The total forces of the element i–th at the step j-th are: 
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At this point it needs to understand if these forces change or not the state of 

the structure. The problem can be solved by imagining that there is a beam 

with different sampling points (Gauss points). At these points can be obtained: 
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(5.67)

 
By solving the previous integral by a sum in quadrature, for each point k-th 

stress characteristics are known: 

 Mk, Vk, Nk.
 

(5.68)

A generic trait (rigid or deformable) is described by a certain surface domain 

both in the plan M-N and in the plan V-N (see Figure 5.15).  
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If the points are within the domain does not change anything and the state can 

be accepted without changing contributions to the stiffness. 

 
Figure 5.15: Behaviour of the wall during the load steps. 

If at the generic iteration, it starts from an internal point and end outside the 

domain, the solution cannot be accepted. It is necessary to return the solution 

in the domain. The problem can be solved by assuming that there is an 

acceptable first part and a second part that must be changed. The plasticity 

must be taken into account so the end point returns into the domain. 

The law of plastic flow can be used. A method that takes account of the crisis 

to sliding shear, diagonal shear and flexural failure is required. These two 

types of crises can be obtained directly from regulatory provisions exposed in 

section 3.1. A model frame which includes these two modes of crisis must be 

realised. A model with macro-elements will be used.  
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6. Validation of the proposed models 

6.1 Introduction 

This chapter aims at validating the model presented in chapters 4 and 5 by 

comparing the numerical simulations to a series of experimental results 

currently available in scientific literature. Those results generally derives by 

experimental tests results carried out at Slovenian National and Civil 

Engineering Institute (ZAG). 

In the followings sections, the experimental data obtained from these tests are 

compared and interpreted for to be compared with the results that may be 

derived from the classical models of masonry. The innovative characteristic 

consists on the model used for the application of the two previous methods, 

which does not require the application of the classical Finite Element models 

or the application of commercial computational models for masonry 

structures (such as analysis code 3Muri, the SAM method [39] and others). 

This study aims at describing the basic principles of seismic strength of 

masonry structures, review macro modelling approach to modelling masonry 

structures using frame-like models and compare the effectiveness of various 

approaches and modelling assumption by doing numerical simulation of 

seismic response of a masonry building, which was tested on a shaking table. 

The results of numerical analyses are compared to experimental data obtained 

on a shaking table test, which was performed at ZAG at 1:4 scale. The tested 

structure was built using YTONG material (AAC masonry). The results validate 

our models and also expand our knowledge and confidence when assessing 

seismic response of masonry structures and in particularly confined masonry 
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structures built from AAC.  For the modelling of the structure a simplified 

model based on frame and the use of link elements available in the Finite 

Element program SAP2000® (Version 14) [52] was used. These elements can 

be used to model structural elements such as piers and spandrels; because 

they provide the ability to define nonlinear behaviour. A model that possesses 

sufficient accuracy and ease of analysis is wanted. However, this structural 

model is not sophisticated enough to be able take into account  the effect of 

variable normal forces on ultimate shear. 

However, from experimental data and experience is known that these changes 

in normal stress due to seismic action can be neglected for small buildings (in 

terms of number of floors) and with some regularity in plan and elevation. 

This is also verified in this study in section 6.4.7. 

This chapter start with the introduction about a description of behaviour of 

masonry under lateral loads and typical failure models. In the following, a 

common approach to modelling masonry using frame elements is presented 

as well as a description of one possible application in program SAP2000® 

using link elements. The methods for assessments of seismic strength are 

presented. Finally the building that is analysed is presented as well as the 

experiments on shaking table. The numerical analysis of the structure is 

presented, including pushover analysis, different approaches to modelling 

slabs and analysis of axial forces behaviour with comparisons of all the 

approach and methods. 

The classical analysis methods prescribe the type of the mathematical model 

(with same simplifications) and the type of control of seismic strength and 

demand. The N2 method, on the other hand, only prescribes the way in wich 

seismic capacity and demand should be compared and the choice of the model 

of the structure is in essence arbitrary and left to the deigning engineering. 

One of the aims of this study is to see if there is an effect of the mathematical 

model on the results of the N2 method and how big these effects are.  
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6.2 Modelling masonry structures 

The behaviour of multi–storey building is strongly influenced by the presence 

of spandrels of the floor. Indeed, according to the rigidity of the top spandrels 

in relation to that of piers a different static scheme of  these ones is 

considered. 

In practice, the modelling changes from piers prevented to rotate at the top 

(infinitely rigid spandrels) to piers free to rotate to the top. In some model 

analysis the presence of spandrels is taken into account in addition to the 

masonry walls, making it more precise and a better representation of the real 

behaviour of the wall. 

6.2.1 Modelling based on frame elements 

A model for masonry structure should address the following basic aspects:  

1) it must include all the possible collapse mechanisms;  

2) it must comply with all local and global equilibrium;  

3) it must have the right balance between level of detail and ease of use;  

4) it needs to have thresholds of damage defined, for example as a function 

of the displacement. 

The following paragraphs describe a method that is based on the use of link 

elements which generally provide good reliability at low computational cost. 

 
Figure 6.1: Modelling of a two level masonry wall with openings for the window. 
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Equivalent-frame models are generally considered for analysing masonry 

structures as they represent a trade-off between simplicity and accuracy (see 

Figure 6.1). 

In this class of model, the generic brick structure is viewed as a frame made up 

from frame items. Often, the model would involve the use of rigid offset in 

order to outline the nodal zones of intersections between piers and spandrels. 

The most known of these methods is the SAM method [39]. If the wall 

geometry is sufficiently regular, it is possible to modelling a masonry wall as a 

frame consisting of:  

a) pier elements;  

b) spandrel elements;  

c) node elements (rigid zones). 

Only the first two elements are modelled as elements with axial and shear 

deformation. The nodal elements are assumed infinitely rigid and strong and 

are modelled through the use of offset elements. The pier elements are 

characterised by a certain effective length of the deformable part. Constitutive 

law for piers and spandrels is defined taking into account all three possible 

failure modes, which is shown in the following sections. 

6.2.2 Modelling with link elements 

The possible simulation of masonry macro-elements by means of equivalent 

frames has been recalled in section 6.2.1. A further design-oriented 

simplification can be achieved by simulating the same masonry elements 

through the so-called “link” element available in SAP2000®. The links can be 

employed in modelling the key aspects of the mechanical response of parts of 

the structure (either piers or spandrels, see Figure 6.2).  
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Figure 6.2: Modelling a deformable element through a link element. 

In particular, link elements connect two nodes of the structural model and are 

characterised by a (generalised) force-displacement relationships which can 

be calibrated for simulating both stiffness and strength of masonry walls 

taking into account (through a simplified way) their relevant failure modes. 

It is also possible to use these elements to represent the viscous behaviour of 

elements (dissipation). In defining the kind of behaviour of the link element, in 

a special box, the mechanical properties of this constitutive law can be 

assigned. Finally, the link element can be assigned to the structure both in 

punctual and linear form (link between two distant points). In the Figure 6.3 is 

possible to see the loading process that affects these elements. 

 
Figure 6.3: Loading process [52]. 
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For each link element, used in the SAP2000® model the following three 

behaviours are defined:  

1) for the shear in the wall plan it assumes an elastic perfectly plastic 

behaviour and the ultimate shear is assumed to be equal to the ultimate 

shear on diagonal cracking, as calculated in the previous chapter (Figure 

6.4);  

2) for the bending behaviour it assumes an elastic behaviour (Figure 6.5);  

3) for the axial behaviour it assumes a linear elastic behaviour, following the 

analysis of the axial stiffness of the wall (EA), reported in Figure 6.6.  

 
Figure 6.4: Shear behaviour. 

For modelling of the structure, which will be presented later on, it will use a 

linear behaviour for axial force (N), nonlinear behaviour for shear (V) and 

linear behaviour for bending moment (M); with back–checking of axial forces. 

  
Figure 6.5: Rotation behaviour. Figure 6.6: Axial behaviour. 
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In order to define the nonlinear generalised force–generalised displacement 

relationship, appropriate stiffness must be used. Stiffness for the axial force is 

EA, stiffness for shear is 
AG
h


2,1

 and stiffness for buckling is 
IE

h
12

3

. 

6.3 Experiments on a shaking table 

6.3.1 Physical modelling 

The capacity of testing facilities, available at Slovenian National Building and 

Civil Engineering Institute (ZAG) does not permit the testing of seismic 

response of real size structures. By using the simple, uni-directional 

earthquake simulator, installed at ZAG, the models of buildings only can be 

tested. On the basis of experience, technology for producing AAC materials 

and capacity of the shaking table, it has been decided that the model built at 

1:4 scale be tested. The modelling scale is relatively small, so that the 

buildings up to four storey high can be tested, but sufficiently large so that all 

relevant structural details can be reliably modelled.  

Compared to the basic prototype, therefore, it was possible to build in scale 

models and using appropriate theories of modelling elements in scale and the 

mechanical and geometrical characteristics of the real structure from 

measurements made on the scaled structure can be obtained. In particular, 

scale factors listed in the Table 6.1 can be used. 

If a general physical quantity, qM, is measured on the models, the following 

correlation exists between the measured value on the model and the 

corresponding value on the prototype, qP [53][54]: 

 
qMP Sqq   (6.1) 

where Sq is the scale factor for the given physical quantity. 
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Table 6.1: Scale factors in the case of the complete model similitude [55]. 
Physical quantity Relationship Scale factor 

Length (l) SL = lP / lM 4 

Strength (f) Sf = fP / fM = SL 4 

Strain () S = P / M 1 

Sp. weight () S = P / M 1 

Displacement (d) Sd = SL 5 

Force (F) SF = SL2 Sf = SL3 64 

Time (t) St = SL0.5 2 

Frequency () S = 1 / St 0,5 

Velocity (v) Sv = SL / St = SL0.5 2 

Acceleration (a) Sa = Sv / St 1 
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6.3.2 Prototype structure 

The prototype buildings, investigated within the framework of this project, are 

typical residential buildings, built as confined masonry structures in YTONG 

system. As a prototype building, an idealised masonry building, with similar 

distribution of walls in plan and similar distribution of window and door 

openings along the height been selected (see Figure 6.7 and Figure 6.8). 

The dimensions of the idealised prototype building, corresponding to the 

tested models, in the plan are 6,85 x 8,75 m, whereas the storey height 

amounts to 2,50 m. The prototype dimensions of the YTONG masonry blocks 

are 62,5/25/30 cm (length/height/thickness), according to the actual 

characteristics of model materials, the prototypes represent buildings, built 

with strength class 4 AAC masonry blocks. The walls are constructed 

according to YTONG technology rules, using YTONG paste for gluing the units.  

 
Figure 6.7: Dimensions of the idealised prototype building in plan and position of vertical confining 

elements [55]. 
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Figure 6.8: Isometric view on the prototype of the tested model M3 [55]. 

Prototype buildings are confined masonry structures with a system of vertical 

and horizontal confining elements, tie-columns and bond beams. The vertical 

confining elements are placed at all corners, wall intersections and at the free 

edges of window and door openings with an area of opening greater than 1,5 

m2 (SIST EN 1998-1), and where the distance between them would be greater 

than 5 m. The ties-columns are longitudinally reinforced with 4 Ø 14 mm 

diameter bars, whereas the cross section is commentary with 16 cm diameter.  

The placing of vertical confining elements in the case of the prototype, 

represented by model M3, is the same, however, the amount of steel is 

increased to 4 Ø16 mm diameter bars, but the diameter of the cross section 

decreased from 16 cm to only 10 cm. Horizontal bond beams are reinforced 

with 4 Ø 12 mm diameter bars, located within the floors slabs on the top of all 

walls in each storey. 
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6.3.3 Physical models 

The models have been built at 1:4 scale. The dimensions in plan have been 

1,71 m by 2,19 m, with the storey height equal to 0,675 m. Taking into 

consideration the different thicknesses of floor structures, the height of model 

M3 was 2,65 m. The thickness of walls was 7,5 cm. The layout of models in 

plan and whereas the vertical sections are presented in the Figure 6.9 and 

Figure 6.10. 

 
Figure 6.9: Dimensions of the models in plan [55]. 
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Figure 6.10: Plan and vertical sections of model M3 [55]. 

Before the shaking table tests, additional masses to compensate the missing 

live load on the floors and missing mass of the roof structure had to be fixed 

on the models' floors (see Table 6.2 and Figure 6.11). 
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Table 6.2: Model M3. Mass distribution at floor levels [55]. 

 1st storey 
[kg] 

2nd storey 
[kg] 

3rd storey 
[kg] 

4th storey 
[kg] 

walls 175 175 175 79 

floor 406 406 406 406 

weight 560 560 560 680 

total 1141 1141 1141 1165 

grand total  4588 kg 
 

 
Figure 6.11: Distribution of weights on the floors of model M3 – fourth floor [55]. 
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6.3.4 Model materials 

6.3.4.1 Mechanical properties of prototype materials 

When designing the models, the dimensions of AAC units and mechanical 

properties of units, mortar and masonry, as well as other materials used for 

the construction of buildings in YTONG system, listed on the official web–site 

of the company (Xella porobeton SI) and published in [55], have been 

considered as target values. The mechanical properties of YTONG masonry are 

summarised in the Table 6.3. 
Table 6.3: Mechanical properties of YTONG masonry [55]. 

Strength 
class 

Density 
[kg/m3] 

fb 
[MPa] 

fck 
[MPa] 

ft 
[MPa] 

E 
[MPa] 

G 
[GPa] 

2 440 2,5 1,71 0,22 1200 480 
4 500 5,0 3,14* 0,24* 2200* 880* 
6 660 7,5 4,28 0,26 3000 1200 

* interpolated 
The meaning of the symbols listed in the previous table are as follows: 

fb - declared strength of the YTONG block, 

fck - characteristic compressive strength of masonry, 

ft - average tensile strength of masonry (units glued on the bed joints and head 

joints), 

E - modulus of elasticity, 

G - shear modulus. 

The dimensions of model masonry units, scaled at geometrical scale, were 

15,6/6,3/7,5 cm (length/height/width). The compressive strength of units has 

been determined on cubes 6,3/6,3/6,3 cm, cut from the blocks. The values are 

given in the Table 6.4. 
Table 6.4: Compressive strength of model YTONG blocks [55]. 

Model YTONG 
blocks 

No. of specimens 20 

Average value (MPa) 1,73 

Coefficient of variation 13 % 
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The properties of the thin layer mortar (paste) for gluing the model masonry 

units have not been modelled because of technological difficulties. The dry 

part of the mortar is prepared in the factory. On the construction site, water is 

added and a special tool is needed to prepare and apply the paste. The results 

of tests for the determination of compressive and bending strength of thin 

layer mortar, obtained on cubes 7,07/7,07/7,07 cm and prisms 4/4/16 cm are 

given in Table 6.5. 
Table 6.5: Compressive and bending strength of thin layer mortar used for the construction of 

model M3 [55]. 

Model M3 
Compressive strength Bending strength 

Cubes Prisms Prisms 
No. of specimens 56 94 46 

Average values (MPa) 13,05 12,39 4,84 
Coefficient of variation 32 % 21 % 21 % 

6.3.4.2 Masonry tests 

In order to determine the mechanical properties of model masonry, 15 model 

walls have been tested, built as either plain or confined masonry walls. Among 

9 confined masonry walls, 3 have been built with vertical confining elements 

(tie-column diameter 4 cm), 6 walls, however, have been built with the same 

tie-columns as in the case of model M3 (tie-column diameter 2,5 cm).  

6.3.4.2.1 Compression tests of model masonry walls 

The compressive strength of masonry has been determined on three 

specimens, denoted T1, T2 and T3 (see Figure 6.12). Whereas specimens T2 

and T3 have been tested as plain masonry walls, without vertical confining 

elements, specimen T1 has been made with vertical tie–columns with 4 cm 

diameter. 
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Figure 6.12: Dimensions and instrumentation of specimens for compression test (left); typical 

model wall at the end of compression test [55]. 

 
Figure 6.13: The results of compression tests [55]. 

As can be seen in Figure 6.13, the influence of vertical confining elements on 

the compressive strength of masonry is not essential. However, the reinforced 

concrete significantly increased the stiffness in compression (see Table 6.6). 
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Table 6.6: Results of compression tests of model masonry [55]. 

Specimen Max. force 
[kN] 

Compr. strength fc 
[MPa] 

Modulus of 
elasticity at 30% fc 

[GPa] 
T1 (tie-columns) 61,12 1,73 7,07 

T2 58,64 1,66 4,14 
T3 46,67 1,32 4,58 

Average T2 and T3 52,66 1,49 4,36 

6.3.4.2.2 Cyclic shear tests of model masonry walls 

The parameters, which define the seismic behaviour of masonry walls, have 

been determined by subjecting the model walls to cyclic lateral load reversals 

at constant vertical preloading (see Figure 6.14). The walls have been tested 

as vertical cantilevers, fixed at the bottom into the horizontally moveable rigid 

platform of the shaking table, whereas the upper part of the walls could freely 

rotate, but was fixed in the horizontal direction. During the tests, the walls 

have been subjected to constant vertical load, acting on the bond–beam on the 

top of the walls, which induced compressive stresses in the walls equal to 20% 

of the masonry's compressive strength (0,20 fc preloading). Horizontal load 

has been imposed in the shape of the programmed displacements of the 

shaking table, with step–wise increased amplitudes of displacements.  

 
Figure 6.14: Test set–up for cyclic shear tests of model masonry walls [55]. 
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At each amplitude step, the loading has been repeated three times in order to 

obtain information about strength and stiffness degradation at repeated load 

reversals. The programmed imposed horizontal displacement pattern is 

presented in the Figure 6.15, whereas the values of peak amplitudes at each 

step of testing are given in the Table 6.7. During the test, the velocity of 

increasing the displacements is kept constant. 
Table 6.7: Imposed displacement pattern [55]. 

Phase 1 2 3 4 5 6 7 8 9 10 
Displacement 

[mm] 0,25 0,50 0,75 1,00 1,50 2,00 2,50 3,00 4,00 5,00 

Phase 11 12 13 14 15 16 17 18 19 20 
Displacement 

[mm] 6,0 7,5 10,00 12,50 15,00 20,00 25,00 30,00 35,00 40,00 

 
Figure 6.15: Imposed displacement pattern [55]. 
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Figure 6.16: Instrumentation of model walls for shear tests [55]. 

All specimens have been instrumented with displacement and force 

transducers (shown in Figure 6.16). All together 10 model walls have been 

tested (Table 6.8). The notation and dimensions of specimens are presented, 

two groups of walls, as regards the dimensions of the walls and the size of 

vertical confining elements, have been tested (see Table 6.9 and Table 6.10).  
Table 6.8: Designation and dimensions of model walls for cyclic lateral tests.  

l, h and t are length, height, and thickness of the walls, respectively [55]. 
Wall l [cm] h [cm] t [cm] Remark 
X-1 47 70 7,3 Tie columns as M1 
X-2 47 70 7,3 Plain masonry 
X-3 47 70 7,3 Plain masonry 
X-4 47 70 7,3 Plain masonry 
X-5 47 70 7,3 Plain masonry 
X-6 47 70 7,3 Tie columns as M1 
X-7 47 58 7,4 Tie columns as M3 
X-8 47 58 7,2 Tie columns as M3 
X-9 47 58 7,2 Tie columns as M3 

X-10 47 58 7,2 Tie columns as M3 
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Table 6.9: Resistance and displacements (rotation) at characteristic limit states [55]. 

 Damage limit Maximum resistance Design ultimate 
limit Collapse 

Wall d 
[mm] 

Fh   
[kN] 

   
[%] 

d 
[mm] 

Fh   
[kN] 

   
[%] 

d 
[mm] 

Fh   
[kN] 

   
[%] 

d 
[mm] 

Fh   
[kN] 

   
[%] 

X-1 2 3,90 0,27 36,61 5,18 4,94 - - - 36,61 5,18 4,94 
X-2 1 2,08 0,13 4,28 3,19 0,57 16,12 2,47 2,16 30,00 1,79 4,02 
X-3 1 2,24 0,13 3,21 3,15 0,43 9,92 2,49 1,33 12,53 1,62 1,68 
X-4 1,5 2,21 0,20 4,61 3,26 0,61 29,55 2,80 3,92 50,26 2,34 6,67 
X-5 1,5 1,89 0,20 5,19 3,34 0,69 20,12 2,51 2,68 60,97 1,72 8,11 
X-6 1,5 4,11 0,20 9,18 5,00 1,22 12,18 3,81 1,61 30,01 2,39 3,97 
X-7 1 4,41 0,16 5,02 5,79 0,80 6,75 4,31 1,08 30,01 1,52 4,79 
X-8 1 4,24 0,16 3,95 6,47 0,64 3,95 6,47 0,64 3,95 6,47 0,64 
X-9 0,75 4,10 0,12 5,37 6,61 0,84 5,37 6,61 0,84 5,37 6,61 0,84 

X-10 1 4,19 0,16 4,42 6,32 0,71 8,00 4,58 1,28 30,01 2,83 4,80 

Table 6.10: Resistance and displacement capacity of model walls [55]. 
 Damage limit Design ultimate limit Collapse

Wall Fh / Fh,max /H,max Fh / Fh,max /H,max Fh / Fh,max /H,max 
X-1 0,75 0,05 1,00 1,00 1,00 1,00 
X-2 0,65 0,23 0,78 3,76 0,56 7,00 
X-3 0,71 0,31 0,79 3,09 0,51 3,91 
X-4 0,68 0,33 0,86 6,41 0,72 10,89 
X-5 0,57 0,29 0,75 3,88 0,51 11,75 
X-6 0,82 0,16 0,76 1,33 0,48 3,27 
X-7 0,76 0,20 0,74 1,35 0,26 5,98 
X-8 0,66 0,25 1,00 1,00 1,00 1,00 
X-9 0,62 0,14 1,00 1,00 1,00 1,00 

X-10 0,66 0,23 0,72 1,81 0,45 6,79 

As can be concluded on the basis of the observed failure mechanism of the 

plain masonry model walls, i.e. the walls without vertical confining elements, 

the shear resistance of the wall was greater than the flexural capacity of the 

walls' section at the foundation block because of the relatively high tensile 

strength but low compressive strength of AAC masonry (see Table 6.11). 

Consequently, the walls without vertical confining elements failed in bending 

(Figure 6.17). If confined, however, the flexural resistance is improved, so that 

the confined walls failed in shear. Since the tie–columns do not significantly 

improve the shear resistance of the walls (the area of concrete is small and the 

contribution of vertical reinforcement at shear is not significant), the confined 
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walls failed in shear with characteristic diagonal cracks developed in the 

walls. 
Table 6.11: Failure mechanisms and resistance of the tested model walls [55]. 
Wall Remark Failure mode Fh,max [kN] 
X-1 Tie columns as M1 shear 5,18 
X-2 Plain masonry flexural 3,19 
X-3 Plain masonry flexural 3,15 
X-4 Plain masonry flexural 3,26 
X-5 Plain masonry flexural 3,34 
X-6 Tie columns as M1 shear 5,00 
X-7 Tie columns as M3 flexural 5,79 
X-8 Tie columns as M3 shear 6,47 
X-9 Tie columns as M3 shear 6,61 

   
Figure 6.17: Flexural failure of a plain (left) and shear failure of a confined masonry wall (right) 

[55]. 
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6.3.4.2.3 Diagonal compression test 

Tensile strength of model masonry has been determined by means of diagonal 

compression test of wall prisms. The test set up is schematically presented in 

the Figure 6.18, where a typical specimen after the diagonal compression test 

is shown. The tensile strength is calculated by equation: 

 V
t 0,45 Ff

A


,
 (6.2) 

where Fv is the maximum measure compressive force, and A is the cross–

sectional area of the panel, determined by the length of the panel and the 

thickness of the wall. 

  
Figure 6.18: Test set–up for the diagonal compression test [55]. 

The conversion of the test results, obtained on the models, to the prototype in 

terms of resistance, displacement and energy dissipation capacity, is, 

fortunately not so complicated (see results in Table 6.12). 
Table 6.12: Tensile strength of the model YTONG masonry [55]. 

Specimen F         
[kN] 

ft     
[MPa] 

X-ft-1 15,59 0,253 
X-ft-2 12,32 0,200 
X-ft-3 12,81 0,208 
X-ft-4 17,30 0,281 
X-ft-5 16,62 0,270 
X-ft-6 17,23 0,279 

Average 15,31 0,248 
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6.3.5 Shaking table and testing procedure 

6.3.5.1 Shaking table 

The shaking table, installed at Slovenian National Building and Civil 

Engineering Institute, is a simple testing facility, used for simulation of 

earthquake ground motion.  

The facility consist of three main parts (shown in Figure 6.19):  

- mechanical assemblage, consisting of a moveable steel box–type platform, 

on which the model is tested, and a steel box, fixed to the laboratory testing 

floor, which supports the moveable platform and controls the direction of 

motion. For this purpose, steel guide–rails  with teflon slide–bearings, 

which prevent any lateral motion and rotation of the moveable platform, 

are fixed to the foundation box; 

- hydraulic system which moves the platform, consisting of a two–way 

acting, programmable hydraulic actuator with a servo valve and hydraulic 

pump. On the one side, the actuator is fixed to a steel reaction walls, on the 

other, however, on the moveable platform; 

- electronic system to control the intensity and time history of the motion of 

the platform  
To drive the shaking table, a two–way acting, programmable actuator Schenk 

PL 160N of ± 160 kN force capacity at ± 125 mm stroke has been used. The 

dynamic capacity of the actuator in combination with the hydraulic pump 

used in this particular project made possible to model the frequency content 

and intensity of motion (accelerations) to fulfill the requirements of model 

similitude at the chosen technique of physical modelling and masses of models 

and the moveable part of the shaking table. 
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Figure 6.19: Shaking table with one of the models, ready for testing. Steel reaction wall and 

hydraulic actuator can be seen in front of the table [55]. 

The measurements, carried out within the calibration process of the facility, 

have indicates that the moveable platform is rigid enough to carry the bending 

effects, developed as a result of interaction between the model and the 

platform during the dynamic testing. Laboratory personal computer and 

home–made software have been used to control the shaking table motion. 
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6.3.5.2 Measurements and data acquisition 

The models have been built of r.c. foundation slabs and transported from the 

construction site to the shaking table by means of laboratory crane. The 

foundation slabs have been fixed to the moveable platform by means of steel 

bolts. 

The models have been instrumented with two sets of transducers (as can be 

seen in Figure 6.20): 

- with accelerometers to measure the horizontal component of the absolute 

acceleration response in the direction of excitation. At each floor level, 

three instruments, in the middle and at both corners of the floor slab, have 

been fixed to floor structure at each floor level; 

- with displacement transducers (LVDTs) to measure the absolute 

horizontal displacement response of the models in the direction of 

excitation, i.e. the displacements of the models with regard to the fixed 

testing floor. As in the case of the accelerometer, three displacement 

transducers, in the middle and at both corners of the floor slab, have been 

fixed to the floor at each floor level. 

Whereas the accelerometers have been fixed directly to the floor slabs, the 

displacement transducers have been fixed to an outer rigid steel frame, which 

consisted of two columns and corresponding number of girders. The columns 

have been fixed to the testing floor. The calibration indicated that the effect of 

noise, transferred from the platform to the testing floor and to the 

displacement transducers' supporting frame did not affect the results of 

measurements to a great degree. 

Besides, the motion of the shaking table has been controlled by measuring 

accelerations and displacements in the direction of motion. 
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Figure 6.20: Steel supporting frame to fix the displacement transducers during  the testing of 

model M3 [55]. 
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6.3.5.3 Modelling of the earthquake ground motion 

N–S component of the Petrovac, Hotel Oliva ground acceleration record of the 

magnitude Mw = 6,9, Montenegro earthquake of April 15, 1979, with peak 

ground acceleration 0,43 g, has been used to drive the shaking table. The 

digitised acceleration time history data, the calculated displacement time 

history as well as the elastic response spectra, have been retrieved from the 

European Strong–Motion Database, ESM (see Figure 6.21).  

 

 
Figure 6.21: N-S component of the acceleration time history of the Montenegro, April 15, 1979 

earthquake (Petrovac, Hotel Oliva record. Source: ESM database) [55]. 

In order to retrieve as many data as possible, the models are tested by 

subjecting them to a sequence of excitations with gradually increased 

intensity (see Table 6.13). In between, the propagation of eventual damage to 

models and changes in dynamic characteristics are followed. Each test run is 

named according to intensity of seismic excitation. 
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Table 6.13: Correlation between the maximum actual measured and programmed input 
displacements and accelerations of the shaking table motion during the testing of model M3 [55]. 

M3 
Accelerations [ms-2] Ratio 

amax,0/amax,prg 
Displacements [mm] Ratio 

dmax,0/dmax,prg amax,0 amax,prg dmax,0 dmax,prg 
R005 0,24 0,22 1,11 0,61 0,57 1,07 
R025 1,24 1,08 1,14 2,91 2,85 1,02 
R050 2,45 2,16 1,13 5,75 5,70 1,01 
R075 3,85 3,25 1,19 8,55 8,55 1,00 
R100 5,02 4,33 1,16 11,37 11,40 1,00 
R150 7,60 6,49 1,17 17,10 17,10 1,00 
R200 10,10 8,65 1,17 21,99 22,81 0,96 
R250 12,63 10,82 1,17 27,41 28,51 0,96 

6.3.5.4 Testing procedures 

All models have been tested with the same sequence of seismic excitations. In 

each testing phase: 

- the model has been subjected to seismic excitation; 

- by exciting free vibrations of the model with impact hammer, the first 

natural frequency has been determined; 

- the models have been inspected and the damage to models' walls was 

identified and photographed. 

The behaviour of models during shaking tests has been recorded with two 

video cameras. 
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6.4 Numerical analyses 

6.4.1 Description of the modelling 

Scale model M3 was modelled in SAP2000® using the following components:  

1) link elements: to model the deformable zones, of walls parts between the 

openings and for the floor spandrels and parapets. They have a multi–

linear elastoplastic behaviour; 

2) rigid frame elements: were used to model the non-deformable and non-

damageable areas, which are assumed infinitely stiff. For these elements a 

frame element with the definition of rigid length by rigid offset function of 

SAP2000® is defined;  

3) shell elements for floor slabs. 

In the next Figures 6.22 – 6.24 there are the modelling of each wall panels. 

  
Figure 6.22: North wall and the model. 
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Figure 6.23: South side and the model. 

   
Figure 6.24: East and west side and their model. 

For the floors modelling a shell element with 35 mm thickness has been 

assigned. The following Figure 6.25 shows a 3D view of the overall model 

obtained. 
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Figure 6.25: 3D view. 
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6.4.2 M3 model: geometric and mechanical properties 

The principles exposed in previous paragraphs for the modelling of masonry 

are used to analyse the M3 model. In the Figure 6.26, the numbering of wall is 

schematised presented. 

 
Figure 6.26: Numbering of masonry walls [55]. 

Geometrical and mechanical characteristics used in the following analyses are 

listed below. 
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1) Geometrical properties  

t = 0,075 m  "thickness" 

hp = 0,3125 m "height of the parapet" 

hb = 0,563 m "height of the balcony" 

hw = 0,25 m "height of the window" 

2) Mechanical properties  

fc = 1490 kN/m2 = 1,49 MPa "compressive strength" 

ft = 250 kN/m2 = 0,25 MPa "shear strength (tensile)" 

E = 7070000 kN/m2 = 7070 MPa "modulus of elasticity" 

G = 94000 kN/m2 = 94 MPa "shear modulus" 

ρ = 495,6 kg/m3 "density" 

µ = 35 
 

"ductility factor" 

2) Load in plates 

gp = 2,56 kN/m2 "specific weight" 

3) Load in roof 

gr = 2,86 kN/m2 "load on roof" 
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The reference generic  masonry panel is shown in the Figure 6.27. 

 
Figure 6.27: Reference system. 

The following quantities are defined:  

a) x and y are the center of gravity coordinates of the panel’s cross section 

with respect to the global coordinate system;  

b) ξ and η are the element’s local axes exposed in the global coordinate 

system;  

c) dξ and dη are the width and thickness of the element, in ξ and η directions 

respectively;  

d) hξ and hη are the height of the element views in both directions, in 

direction ξ and η;  

e) α is the clockwise positive angle from the horizontal to the ξ axis of the 

element. 

For each masonry panel the vertical stress (σ) was computed by assuming 

simplified load distribution.  
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The stiffness in each of the local direction, is obtained using the following 

expressions: 
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(6.4) 

In this situation diagonal shear cracking collapse for all masonry walls and in 

particular those in the first floor are predicted. The reason is due to the 

following aspects:  

1) the sliding shear failure can be excluded (in particular in the first floor) 

because of the high value of normal vertical loads and the presence of 

mortar with good mechanical properties;  

2) the flexural failure can be excluded due to the presence of the tie–column 

at the walls intersections, which constitute a very significant 

reinforcement and increase the ultimate moment resistance of the wall; 

3) observation of the experimental response, where most walls failed in 

diagonal shear. 

The shear strength for diagonal cracking in both direction was calculated 

using the following equation: 

t

t

fb
fddH 

  19,0 ;
 t

t

fb
fddH 

  19,0 .
 

(6.5)

 
Applying the previous relationships it’s possible to obtain the results reported 

in the following Table 6.14 and Table 6.15. 
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Table 6.14: General data of the walls. Each floors. 

i x y dξ dη hξ hη α Kξ Kη b 

[] [m] [m] [m] [m] [m] [m] [rad] [kN/mm] [kN/mm] [] 

1 0,119 0,000 0,313 0,075 0,251 0,663 0,000 7,277 1,486 1,5 

2 0,722 0,000 0,269 0,075 0,251 0,663 0,000 6,242 1,278 1,5 

3 1,391 0,000 0,269 0,075 0,251 0,663 0,000 6,244 1,278 1,5 

4 1,994 0,000 0,313 0,075 0,251 0,663 0,000 7,277 1,486 1,5 

5 1,056 0,859 0,550 0,075 0,663 0,663 0,000 4,800 2,616 1,5 

6 0,119 1,638 0,313 0,075 0,563 0,663 3,142 3,148 1,486 1,5 

7 1,056 1,638 0,550 0,075 0,563 0,663 0,000 5,673 2,616 1,5 

8 1,994 1,638 0,313 0,075 0,563 0,663 3,142 3,148 1,486 1,5 

9 0,000 0,156 0,238 0,075 0,251 0,663 -1,571 5,502 1,130 1,5 

10 0,000 0,819 0,469 0,075 0,251 0,663 -1,571 10,958 2,229 1,5 

11 0,000 1,481 0,238 0,075 0,251 0,663 -1,571 5,502 1,130 1,5 

12 0,819 0,272 0,469 0,075 0,563 0,663 1,571 4,815 2,230 1,5 

13 1,056 1,248 0,703 0,075 0,663 0,663 -1,571 6,174 3,344 1,5 

14 1,294 0,272 0,469 0,075 0,563 0,663 1,571 4,815 2,230 1,5 

15 2,113 0,156 0,238 0,075 0,251 0,663 1,571 5,502 1,130 1,5 

16 2,113 0,819 0,469 0,075 0,251 0,663 1,571 10,958 2,229 1,5 

17 2,113 1,481 0,238 0,075 0,251 0,663 1,571 5,502 1,130 1,5 
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Table 6.15: Analysis of ultimate shear ultimate for diagonal cracking of the piers on each floor. 
i σ1 σ2 σ3 σ4  Hξ,1 Hη,1 Hξ,2 Hη,2 Hξ,3 Hη,3 Hξ,4 Hη,4 

[] [MPa] [MPa] [MPa] [MPa] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

1 0,062 0,046 0,031 0,016 3,925 0,157 3,828 0,119 3,728 0,081 3,625 0,041 

2 0,074 0,056 0,038 0,019 3,443 0,161 3,344 0,123 3,242 0,083 3,136 0,043 

3 0,074 0,056 0,038 0,019 3,444 0,161 3,345 0,123 3,243 0,083 3,137 0,043 

4 0,062 0,046 0,031 0,016 3,925 0,157 3,828 0,119 3,728 0,081 3,625 0,041 

5 0,110 0,083 0,057 0,030 7,428 0,477 7,146 0,368 6,851 0,254 6,544 0,136 

6 0,081 0,061 0,041 0,022 4,045 0,203 3,923 0,156 3,796 0,107 3,665 0,057 

7 0,081 0,061 0,041 0,022 7,120 0,358 6,904 0,274 6,681 0,188 6,450 0,100 

8 0,081 0,061 0,041 0,022 4,045 0,203 3,923 0,156 3,796 0,107 3,665 0,057 

9 0,083 0,062 0,042 0,021 3,083 0,158 2,987 0,121 2,887 0,082 2,784 0,043 

10 0,088 0,066 0,044 0,023 6,127 0,328 5,929 0,251 5,722 0,171 5,507 0,089 

11 0,083 0,062 0,042 0,021 3,083 0,158 2,987 0,121 2,887 0,082 2,784 0,043 

12 0,136 0,103 0,070 0,037 6,551 0,491 6,263 0,381 5,963 0,264 5,646 0,142 

13 0,068 0,051 0,035 0,018 8,915 0,385 8,681 0,294 8,439 0,202 8,191 0,106 

14 0,136 0,103 0,070 0,037 6,551 0,491 6,263 0,381 5,963 0,264 5,646 0,142 

15 0,083 0,062 0,042 0,021 3,083 0,158 2,987 0,121 2,887 0,082 2,784 0,043 

16 0,088 0,066 0,044 0,023 6,128 0,328 5,929 0,251 5,722 0,171 5,507 0,089 

17 0,083 0,062 0,042 0,021 3,083 0,158 2,987 0,121 2,887 0,082 2,784 0,043 

To define element parameters included in the SAP2000® model, the following 

quantities of each macro elements are useful, as shows in the following Table 

6.16 and Table 6.17:  

- area of cross section:  ddA  ; (6.6) 

- module of inertia in the direction of the storey axis: 
12

3




dd
I


 ; (6.7) 

- normal compressive force at the base: AN   ; (6.8) 

- location of the neutral axis: 
c

c fd
Nx




85,0
; (6.9) 

- curvature at the ultimate moment: 
c

mu
y x


  . (6.10) 
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Table 6.16: Analysis of axial force and curvature at first and second floors. 

i A1 N1 xc1 χy1 A2 N2 xc2 χy2 

[] [m2] [N] [mm] [1/mm] [m2] [N] [mm] [1/mm] 

1 0,0234 1445,68 15,22 0,00023 0,0234 1086,71 11,44 0,00031 

2 0,0202 1497,91 15,77 0,00022 0,0202 1127,03 11,87 0,00029 

3 0,0202 1498,22 15,77 0,00022 0,0202 1127,27 11,87 0,00029 

4 0,0234 1445,68 15,22 0,00023 0,0234 1086,71 11,44 0,00031 

5 0,0413 4551,07 47,91 0,00007 0,0413 3441,66 36,23 0,00010 

6 0,0234 1898,21 19,98 0,00018 0,0234 1434,77 15,10 0,00023 

7 0,0413 3340,85 35,17 0,00010 0,0413 2525,19 26,58 0,00013 

8 0,0234 1898,21 19,98 0,00018 0,0234 1434,77 15,10 0,00023 

9 0,0178 1475,60 15,53 0,00023 0,0178 1111,13 11,70 0,00030 

10 0,0352 3079,23 32,42 0,00011 0,0352 2318,40 24,41 0,00014 

11 0,0178 1475,53 15,53 0,00023 0,0178 1111,26 11,70 0,00030 

12 0,0352 4772,83 50,25 0,00007 0,0352 3610,02 38,01 0,00009 

13 0,0527 3562,63 37,51 0,00009 0,0527 2692,56 28,35 0,00012 

14 0,0352 4772,65 50,25 0,00007 0,0352 3609,92 38,00 0,00009 

15 0,0178 1475,89 15,54 0,00023 0,0178 1111,35 11,70 0,00030 

16 0,0352 3079,85 32,42 0,00011 0,0352 2318,87 24,41 0,00014 

17 0,0178 1475,82 15,54 0,00023 0,0178 1111,49 11,70 0,00030 
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Table 6.17: Analysis of axial force and curvature at third and fourth floors. 

i A3 N3 xc3 χy3 A4 N4 xc4 χy4 

[] [m2] [N] [mm] [1/mm] [m2] [N] [mm] [1/mm] 
1 0,0234 727,80 7,66 0,00046 0,0234 368,83 3,88 0,00090 
2 0,0202 756,20 7,96 0,00044 0,0202 385,33 4,06 0,00086 
3 0,0202 756,36 7,96 0,00044 0,0202 385,41 4,06 0,00086 
4 0,0234 727,80 7,66 0,00046 0,0234 368,83 3,88 0,00090 
5 0,0413 2331,69 24,55 0,00014 0,0413 1222,26 12,87 0,00027 
6 0,0234 971,23 10,22 0,00034 0,0234 507,79 5,35 0,00065 
7 0,0413 1709,37 18,00 0,00019 0,0413 893,71 9,41 0,00037 
8 0,0234 971,23 10,22 0,00034 0,0234 507,79 5,35 0,00065 
9 0,0178 746,90 7,86 0,00045 0,0178 382,64 4,03 0,00087 

10 0,0352 1557,42 16,40 0,00021 0,0352 796,27 8,38 0,00042 
11 0,0178 746,86 7,86 0,00045 0,0178 382,64 4,03 0,00087 
12 0,0352 2447,71 25,77 0,00014 0,0352 1284,96 13,53 0,00026 
13 0,0527 1822,29 19,18 0,00018 0,0527 952,17 10,02 0,00035 
14 0,0352 2447,63 25,77 0,00014 0,0352 1284,92 13,53 0,00026 
15 0,0178 747,05 7,86 0,00045 0,0178 382,72 4,03 0,00087 
16 0,0352 1557,74 16,40 0,00021 0,0352 796,44 8,38 0,00042 
17 0,0178 747,01 7,86 0,00045 0,0178 382,72 4,03 0,00087 

Assuming elastic-perfectly plastic behaviour for masonry panels and knowing 

the shear resistance Vds,  the stiffness ( kK  ) and the value of ductility of 

the panel (δy), the following displacements can be obtained:  

- elastic limit displacement: 
k

Vds
y  ;  (6.11) 

- ultimate displacement: yu   . (6.12) 
In the simplified model the resistance of wall panels out of their plan is 

neglected and only seismic excitation in the X direction is considered. 

The panels perpendicular to this seismic load direction (or those disposed 

along y) will be subject to less stress in their plan that will be due to the 

eccentricity between the mass center of gravity of each floor and the stiffness 

center of gravity. The elements arranged along Y, in the case of an earthquake 

in the X direction, should be verified for action perpendicular to their plan, to 

prevent the occurrence of local collapse mechanisms. The results are shown in 

Tables 6.18 – 6.21. 
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Table 6.18: First floor. Diagonal shear parameters. 
i Vds k δy δu 

[] [kN] [N/mm] [mm] [mm] 
1 3,925 7277,282 0,539 18,879 
2 3,443 6241,741 0,552 19,307 
3 3,444 6244,108 0,552 19,306 
4 3,925 7277,282 0,539 18,879 
5 7,428 4800,191 1,548 54,163 
6 4,045 3147,789 1,285 44,978 
7 7,120 5673,476 1,255 43,921 
8 4,045 3147,789 1,285 44,978 
9 3,083 5502,290 0,560 19,611 

10 6,127 10957,785 0,559 19,571 
11 3,083 5502,290 0,560 19,610 
12 6,551 4815,064 1,361 47,620 
13 8,915 6174,301 1,444 50,535 
14 6,551 4815,064 1,361 47,619 
15 3,083 5502,290 0,560 19,611 
16 6,128 10957,785 0,559 19,572 
17 3,083 5502,290 0,560 19,611 

Table 6.19: Second floor. Diagonal shear parameters. 

i Vds k δy δu 

[] [kN] [N/mm] [mm] [mm] 
1 3,828 7277,282 0,526 18,410 
2 3,344 6241,741 0,536 18,751 
3 3,345 6244,108 0,536 18,750 
4 3,828 7277,282 0,526 18,410 
5 7,146 4800,191 1,489 52,103 
6 3,923 3147,789 1,246 43,614 
7 6,904 5673,476 1,217 42,589 
8 3,923 3147,789 1,246 43,614 
9 2,987 5502,290 0,543 18,998 

10 5,929 10960,138 0,541 18,933 
11 2,987 5502,290 0,543 18,998 
12 6,263 4814,004 1,301 45,534 
13 8,681 6175,196 1,406 49,204 
14 6,263 4814,004 1,301 45,534 
15 2,987 5502,290 0,543 18,999 
16 5,929 10960,138 0,541 18,934 
17 2,987 5502,290 0,543 18,999 
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Table 6.20: Third floor. Diagonal shear parameters. 

i Vds k δy δu 

[] [kN] [N/mm] [mm] [mm] 
1 3,728 7277,282 0,512 17,928 
2 3,242 6241,741 0,519 18,178 
3 3,243 6244,108 0,519 18,178 
4 3,728 7277,282 0,512 17,928 
5 6,851 4800,191 1,427 49,956 
6 3,796 3147,789 1,206 42,205 
7 6,681 5673,476 1,178 41,213 
8 3,796 3147,789 1,206 42,205 
9 2,887 5502,290 0,525 18,366 

10 5,722 10960,138 0,522 18,273 
11 2,887 5502,290 0,525 18,366 
12 5,963 4815,064 1,238 43,346 
13 8,439 6174,301 1,367 47,837 
14 5,963 4815,064 1,238 43,346 
15 2,887 5502,290 0,525 18,366 
16 5,722 10960,138 0,522 18,273 
17 2,887 5502,290 0,525 18,366 

Table 6.21: Fourth floor. Diagonal shear parameters. 
i Vds k δy δu 

[] [kN] [N/mm] [mm] [mm] 
1 3,625 7277,282 0,498 17,432 
2 3,136 6241,741 0,502 17,587 
3 3,137 6244,108 0,502 17,587 
4 3,625 7277,282 0,498 17,432 
5 6,544 4800,191 1,363 47,714 
6 3,665 3147,789 1,164 40,749 
7 6,450 5673,476 1,137 39,791 
8 3,665 3147,789 1,164 40,749 
9 2,784 5502,290 0,506 17,711 

10 5,507 10957,785 0,503 17,588 
11 2,784 5502,290 0,506 17,711 
12 5,646 4815,064 1,173 41,042 
13 8,191 6174,301 1,327 46,429 
14 5,646 4815,064 1,173 41,042 
15 2,784 5502,290 0,506 17,711 
16 5,507 10957,785 0,503 17,589 
17 2,784 5502,290 0,506 17,711 

 



Gerardo Carpentieri  Matr. 06201/00179 

226 

As regards the axial behaviour of the link elements a linear elastic behaviour is 

assumed. In particular, in SAP2000®, the following values of normal force (N) 

and its axial displacement (ΔL), obtained by the classical relationship (see 

Table 6.22 for the results) (6.13) are needed. 

 
EA
N

L
L



 .

 
(6.13)

 
Table 6.22: All floors. Axial behaviour. 

i EA N L ε Δ 

[] [kN] [kN] [mm] [] [mm] 

1 165703,1 100000 250,50 0,60 151,17 

2 142478,2 100000 250,50 0,70 175,82 

3 142531,2 100000 250,50 0,70 175,75 

4 165703,1 100000 250,50 0,60 151,17 

5 291637,5 100000 662,50 0,34 227,17 

6 165703,1 100000 563,00 0,60 339,76 

7 291637,5 100000 563,00 0,34 193,05 

8 165703,1 100000 563,00 0,60 339,76 

9 125934,4 100000 250,50 0,79 198,91 

10 248528,2 100000 250,50 0,40 100,79 

11 125934,4 100000 250,50 0,79 198,91 

12 248581,2 100000 563,00 0,40 226,49 

13 372818,8 100000 662,50 0,27 177,70 

14 248581,2 100000 563,00 0,40 226,49 

15 125934,4 100000 250,50 0,79 198,91 

16 248528,2 100000 250,50 0,40 100,79 

17 125934,4 100000 250,50 0,79 198,91 

As regards rotational behaviour of the section, the rotational stiffness is 

implicitly taken into account in the shear stiffness and a small numerical value 

was used in order to avoid singularity for the numerical procedure. Elastic 

rotational behaviour is assumed. 
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Finally, in the following Table 6.23 the masses and weights of each wall are 

presented:  

- masonry mass for unit of volume: ρ;  

- mass:   hddm ; 
 

(6.14) 

- weight: gmW  . 
 

(6.15) 

Table 6.23: All floors. Mass and weight of the wall. 

i dξ dη hξ m W 

[] [m] [m] [m] [kg] [N] 
1 0,313 0,075 0,251 2,91 28,54 
2 0,269 0,075 0,251 2,50 24,54 
3 0,269 0,075 0,251 2,50 24,55 
4 0,313 0,075 0,251 2,91 28,54 
5 0,550 0,075 0,663 13,54 132,86 
6 0,313 0,075 0,563 6,54 64,15 
7 0,550 0,075 0,563 11,51 112,91 
8 0,313 0,075 0,563 6,54 64,15 
9 0,238 0,075 0,251 2,21 21,69 

10 0,469 0,075 0,251 4,36 42,81 
11 0,238 0,075 0,251 2,21 21,69 
12 0,469 0,075 0,563 9,81 96,24 
13 0,703 0,075 0,663 17,31 169,85 
14 0,469 0,075 0,563 9,81 96,24 
15 0,238 0,075 0,251 2,21 21,69 
16 0,469 0,075 0,251 4,36 42,81 
17 0,238 0,075 0,251 2,21 21,69 
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6.4.3 Structural model for N2 method 

For the implementation of the N2 method the capacity curve of the structure 

must be obtained. This curve shows the base shear as a function of control 

point displacement, usually placed at the center of gravity at the top of the 

structure. In the finite element program SAP2000® was possible to model the 

structure. In particular, all the piers and the spandrels were considered to be 

deformable and they were modelled using the link element described above. 

The floors, however, were modelled using finite element with two dimensional 

shell. The floors, therefore, were modelled as a full slab. In the following 

analysis the behaviour of the structure and the final results of the analysis are 

highly dependent on the floor stiffness. For this reason, hereafter, an analysis 

with both deformable slab and infinitely rigid slab are performed.  During the 

run of the pushover test, the computer program represents the evolution of 

the base shear as a function of the displacement of the control node (Figure 

6.28). 

 
Figure 6.28: Deformation of the structure at a generic step load pushover analysis. 

In this case, the pushover analysis were executed automatically in SAP2000® 

in displacement control. In particular, the load combination of pushover 
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analysis is nonlinear type and includes the performance of different load step 

maximum displacement of the control node. The load case of pushover starts 

by applying the vertical loads due to weight of only elements (frame and rigid 

link element) and the floor. At each loading step of this analysis it was possible 

to control the amount of shear and other stress characteristics in the link 

element (Figure 6.29 and Figure 6.30). In this way it is also possible to 

understand what elements are collapsed and in which range they are. 

   
Figure 6.29: Shear in the link at Step 8 of the pushover with linear forces. North elevation (on the 

left) and south elevation (on the right). 

   
Figure 6.30: Shear in the link at Step 8 of the pushover with linear forces. East elevation (on the 

left) and west elevation (on the right). 
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6.4.4 Structural model for POR method 

In this case, has been done a pushover test using a POR modelling and with the 

piers failure possibility only at the first floor of the building. Therefore, a 

pushover analysis of a structure with solely the first floor of M3 model must 

be run, as shown in the Figure 6.31.  

 
Figure 6.31: Structure used for the pushover analysis with the POR method. 

The methods used to model the structure are the same as in the previous 

paragraph and provide, therefore, the use of a frame modelling of the 

structure that consists of equivalent frame with deformable and rigid parts. 

Unlike the previous case, however, this time is used only a portion of the 

structure, that of the first floor. Therefore, only piers and spandrels on the 

first floor can be damaged, while the rest of the structure above is preserved 

elastic during the test and can be approximated to a rigid body. In this model, 

then, interlocking bonds are assigned to the base of each piers and the control 

node of displacement is placed in the center of gravity of the first floor. 
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6.4.5 Application of N2 method 

6.4.5.1 Data 

For application of the N2 method are adopted the principles set out in the 

Fajfar’s work [48]. This method is useful tool because it is based on a 

comparison of the structure’s capacity curve with the demand curve. 

In the following, the pushover analysis and subsequent implementation of the 

N2 method are performed for different values of the seismic demand in terms 

of spectral peak ground acceleration value and for different values of the 

floor’s stiffness. In particular in case of flexible floor is considered a 35 mm 

concrete slab and run different analysis of the N2 method with three different 

values of the seismic demand. Later additional analysis is performed in the 

case of rigid floor, modelled using shell elements made of rigid material (with 

very large Young's modulus) in SAP2000®. 

For the structure under investigation are known the following floor masses: 

m1 = 1141 kg 
 

"first floor mass" 

      m2 = 1141 kg 
 

"second floor mass" 

      m3 = 1141 kg 
 

"third floor mass" 

      m4 = 1165 kg 
 

"fourth floor mass" 
 

The fundamental period of vibration of the first modal shape, obtained from 

structure modal analysis of the structure is: 

T1 = 0,13 s 
 

"period of the first modal form" 
 

 

 



Gerardo Carpentieri  Matr. 06201/00179 

232 

6.4.5.2 Seismic load and spectrum 

Proceeding in a simplified way, the seismic demand can be defined by using 

spectrum provided in Eurocode 8. In particular, this rule provides possibility 

of using two types of spectra with the following values (Table 6.24 and Table 

6.25). 
Table 6.24: Values of type 1 spectrum [31]. 

Ground type S TB(s) TC(s) TD(s) 
A 1,0 0,15 0,4 2,0 
B 1,2 0,15 0,5 2,0 
C 1,15 0,20 0,6 2,0 
D 1,35 0,20 0,8 2,0 
E 1,4 0,15 0,5 2,0 

Table 6.25: Values of type 2 spectrum [31]. 
Ground type S TB(s) TC(s) TD(s) 

A 1,0 0,05 0,25 1,2 
B 1,35 0,05 0,25 1,2 
C 1,5 0,10 0,25 1,2 
D 1,8 0,10 0,30 1,2 
E 1,6 0,05 0,25 1,2 

 
In this case the Type 1 spectrum is used. Assuming a soil type B, the 

parameters of the spectrum can be defined. However, a scale factor must be 

taken into account in the case of model M3. In particular, for the periods of 

vibration, this factor is: 

2scaleT . 

Ultimately it is necessary to halve the original values in the tables above and 

the new values are shown in the following Table 6.26 and Table 6.27. 
Table 6.26: Scaled values of type 1 spectrum. 

Soil S TB [s] TC [s] TD [s] 

A 1,00 0,08 0,20 1,00 
B 1,20 0,08 0,25 1,00 
C 1,15 0,10 0,30 1,00 
D 1,35 0,10 0,40 1,00 
E 1,40 0,08 0,25 1,00 
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Table 6.27: Scaled values of type 2 spectrum. 

Soil S TB [s] TC [s] TD [s] 

A 1,00 0,03 0,13 0,60 
B 1,35 0,03 0,13 0,60 
C 1,50 0,05 0,13 0,60 
D 1,80 0,05 0,15 0,60 
E 1,80 0,03 0,13 0,60 

In this case, the parameters used are: 

S = 1,20 
 

"soil type factor" 
    

         TB = 0,08 s "start period of the trait with constant spectral acceleration" 

         TC = 0,25 s "start period of the trait with constant spectral speed" 

         TD = 1,00 s "start period of the trait with constant spectral displacement" 
Assuming a typical value of the coefficient of viscous damping: 

 %5 ,
 

(6.16)
 the following reduction factor can be defined: 

   55,000,1
%5

10






 .

 
(6.17)

 

The analysis with the N2 method was performed for three values of peak 

ground acceleration:  

a) gag 25,0  "max value in Slovenia";  

b) gag 50,0  "exceptionally high”;  

c) gag 29,1   "maximum value during the test on the M3                    

model”. 
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The response spectra can be calculated for traits by using the following 

reports: 

Trait 1:     







 15,21 

B
gae T

TSaTS  if: BTT 0 ; (6.18) 

Trait 2:   5,2 SaTS gae  if: CB TTT  ; (6.19) 

Trait 3:   







T
T

SaTS C
gae 5,2  if: DC TTT  ; (6.20) 

Trait 4:   





 
 25,2

T
TT

SaTS DC
gae   if: TTD  . (6.21) 

The spectral displacement is obtained as: 

    
2

2 









TTSTS aede .

 
(6.22)

 

By varying the three PGAs the following response spectra in Figures 6.32 – 

6.34 are obtained. 

 
Figure 6.32: Elastic acceleration spectrum. 
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Figure 6.33: Elastic displacement spectrum. 

 
Figure 6.34: Elastic spectrum in AD format. 
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6.4.5.3 Pushover analysis 

From the pushover analysis executed with uniform and linear distributions 

the following capacity curves in Figures 6.35 – 6.38 were obtained. 

 
Figure 6.35: Pushover curve. N2 Method. Constant forces. 

 
Figure 6.36: Pushover curve. N2 Method. Linear forces. 
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Figure 6.37: Pushover curve. N2 Method. Linear force. Rigid floors. 

 
Figure 6.38: Comparison between flexible and rigid floors. 

 

 

 

 

 

 

 



Gerardo Carpentieri  Matr. 06201/00179 

238 

Assuming linear distribution of forces: 

Φ1 = 0,25 
 

"first floor" 

  
   Φ2 = 0,50 
 

"second floor" 

  
   Φ3 = 0,75 
 

"third floor" 

  
   Φ4 = 1,00 
 

"fourth floor" 
Using these the forces that are applied to different floors are: 

     MP  -> iii mP   i = 1,2,3,4. (6.23) 

6.4.5.4 Transformation to a SDOF system 

At this point, to obtain the capacity curve and compare it with the demand 

curve (in the previous spectrum plan ADRS) is necessary to move from the 

real system MDOF to SDOF ideal system. SDOF system will have a mass equal 

to: 

 kgmm
i

ii 5,2876*  .
 

(6.24)
 

The general amounts of the SDOF system (force or displacement) can be 

obtained by dividing the relevant amount of the MDOF system to a scale 

factor: 

 



QQ* .

 
(6.25)

 
The transition factor is: 

 33,12

*







i
iim

m
.
 (6.26)

 

By scaling forces and displacements of the pushover curve of the MDOF 

system, displacements and forces of the SDOF system can be obtained: 


 tDD* ;

 


VV * .
 

(6.27)
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In the Figure 6.39 and  Figure 6.40, the SDOF capacity curves are presented for 

flexible and rigid floors. 

 
Figure 6.39: Pushover curve. N2 Method. Linear forces. SDOF system. Flexible floors. 

 
Figure 6.40: Pushover curve. N2 Method. Linear forces. SDOF system. Rigid floors. 
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6.4.5.5 Bilinear idealisation 

In the next step a bi-linearization of the SDOF capacity curve assuming a linear 

perfectly plastic behaviour is performed. This can be done first by assuming a 

maximum force equal to: 

 NFy 88,27919*  .
 

(6.28)
 

The ultimate displacement will be: 

 mmDu 15,32*  ,
 

(6.29)
 

in the rigid floor case: 

 NFy 93,28237*  ,
 

mmDu 30,15*  . (6.30)
 In the linear part the elastic limit displacement value must be defined. Thus, 

the area under the two curves is the same (i.e., the dissipated energy must be 

constant). The idealisation is performed using trapezoidal integration rules. 

The length of the step, in terms of displacements, is: 

 **
1 iii DDu   .

 
(6.31)

 
The area under the tract "i" will be: 

 
2

**
1 ii

ii
FFuA 

  .
 

(6.32)
 

The total area under the curve will be: 

 
i

ireal AA .
 (6.33)

 
The area under the idealised curve is: 

  *****

2
1

yuyyyid DDFDFA  .
 

(6.34)
 

By the equality of areas under the two curves, the following value for flexible 

floors: 

 mmD y 97,13*  .
 

(6.35)
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For rigid floors: 

 mmD y 56,2*  .
 

(6.36)
 

Idealisation is graphically presented in the Figure 6.41 and Figure 6.42. 

 
Figure 6.41: Pushover curve. Idealisation. SDOF system. 

 
Figure 6.42: Pushover curve. Idealisation. SDOF system. Rigid floors. 
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6.4.5.6 Reduction factor 

At this point the period of vibration of the SDOF system can be obtained: 

 s
F

Dm
T

y

y 24,02 *

**
* 


  .

 
(6.37)

 

The capacity curve in the ADRS plan can be determined by dividing the force 

by the mass of the SDOF system: 

    
*

**
*

m
DFDSa  .

 
(6.38)

 

The maximum acceleration of the system is: 

 
2*

*

71,9
s
m

m
F

S y
ay  .

 
(6.39)

 

In the case of rigid floors: 

 sT 10,0*  ,
 

282,9
s
mSay  . (6.40)

 
The demand for the structure is not elastic demand spectrum, but this 

spectrum should be reduced to take into account the nonlinear capacity of 

structure and get the plastic demand spectrum. 

The reduction factor is equal to the ratio between the maximum acceleration 

of the elastic response spectrum and maximum acceleration of the capacity 

spectrum of the structure: 

 
ay

ae

S
S

R  .
 

(6.41)
 

Once that reduction factor is obtained; the ductility of the system will be: 

   11 * 
T
TR C

 ,
 

if: CTT * ; (6.42)
 

  R
 

if: CTT * . (6.43) 
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In the event that it proves Rµ < 1,0 there is no reduction of the spectrum, and 

the plastic demand spectrum coincides with the elastic one. By varying the 

peak ground acceleration the following values in Table 6.28 are obtained. 
Table 6.28: Values of reduction factor and ductility. 

 0,25 g 0,50 g 1,29 g Rigid 

Sae [m/s2] 7,36 14,72 37,96 37,96 

Rµ 0,76 1,52 3,91 3,87 

µ 1,00 1,54 4,05 8,06 

Knowing the ductility, the whole demand spectrum can be defined. First is 

defined the reduction factor: 

   11 
CT

TR  ,
 

if: CTT * ; (6.44)
 

  R ,
 

if: CTT * . (6.45) 

The coordinates of each point of the spectrum demand are: 

 
R

S
S ae

a  ,
 

ded S
R

S 



. (6.46)

 
The intersection of the scaled demand spectrum with bilinear capacity 

spectrum is the performance point.  

SDOF system period of vibration defines the elastic spectral displacement: 

  *TSS dede  .
 

(6.47)
 

The SDOF system displacement demand is: 

   



  *11

T
T

R
R
S

S Cde
d 



;
 

if: CTT * ; (6.48)
 

 ded SS  ;
 

if: CTT * . (6.49) 
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6.4.5.7 Demand for MDOF system 

Finally, the demand for the MDOF system is: 

 dt SD  .
 

(6.50)
 

In Table 6.29 the values of the displacements obtained for the three cases are 

presented. 
Table 6.29: Displacement demand. 

[mm] 0,25 g 0,50 g 1,29 g Rigid 

Sde 10,70 21,50 55,40 9,81 

Sd 10,70 21,86 57,42 20,45 

Dt 14,23 29,06 76,35 27,20 

6.4.5.8 Graphical representation of capacity and demand 

Graphical representation of capacity and demand are in the following Figures 

6.43 – 6.46  for different cases that were analysed.  

 
Figure 6.43: Result for ag = 0,25 g. 

As can be seen from the previous Figure 6.43 the model will respond 

elastically to the design earthquake with 0,25 g PGA. 
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Figure 6.44: Result for ag = 0,50 g. 

The response to the design earthquake with 0,50 g PGA is in the plastic range, 

as can be seen in the previous Figure 6.44.  The demand displacement for 

SDOF system is m022,0 . 

 
Figure 6.45: Result for ag = 1,29 g. 

The plastic displacement demand for the 1,29 g PGA design earthquake is 

m055,0 . 
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Figure 6.46: Result for rigid floors. 

In case of rigid floors, the demand displacement is about the same at 0,043 m 

for SDOF system. Displacement demand increases with increasing of seismic 

demand. Knowing the displacement demand, it can trace back to the load step 

of the pushover analysis, and analyse damage (performance) of the structure. 

In particular, the steps obtained are: 

a) Step 9  for:  ag = 0,25 g,    and: Dt = 14,23 mm; 

b) Step 13  for:  ag = 0,50 g,    and: Dt = 29,06 mm; 

c) Step 36  for:  ag = 1,29 g,    and: Dt = 76,36 mm; 

d) Step 15 for: ag = 1,29 g & Rigid floors,  and: Dt = 27,20 mm. 
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6.4.5.9 Results 

The result of the N2 method enable us to represented schematically the state 

of the structure for the given earthquake demand. 

The following Figures 6.47 – 6.53 contain the link elements as rectangles of 

different colors according to the state in which they are:  

- the green color indicates that the element remains in the elastic state;  

- the orange color indicates that the element came in to plastic region;  

- the red color indicates that the element is collapsed. 

 
Figure 6.47: Link elements behaviour. 

 

a) Step 9 (Dt = 14,23 mm) (ag = 0,25 g) 

 

The response is elastic. 
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b) Step 17 (Dt = 29,06 mm) (ag = 0,50 g) 

   
Figure 6.48: Status of link element in step 17 (29,06 mm). North elevation (on the left) and south 

elevation (on the right). 

 
Figure 6.49: Status of link element in step 17 (29,06 mm). Central wall (number 5). 

 

 

 

 

 

 

 

 



Chapter 6                                                                            Validation of the proposed models 

 249 

c) Step 23 (Dt = 76,36 mm) (ag = 1,29 g) 

The displacement demand is more than the maximum capacity displacement 

of the structure.  

The collapse mechanism is represented in the following pictures. 

   
Figure 6.50: Status of link element in step 23 (42,75 mm). North elevation (on the left) and south 

elevation (on the right). 

 
Figure 6.51: Status of link element in step 23 (42,75 mm). Central wall (number 5). 
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d) Step 15 (Dt = 27,20 mm) (Rigid floors case) (ag = 1,29 g) 

    
Figure 6.52: Status of link element in step 15 (27,20 mm) with rigid floors. North elevation (on the 

left) and south elevation (on the right). 

 
Figure 6.53: Status of link element in step 15 (27,20 mm). Central wall (number 5). 

The previous Figures 6.47 – 6.53 show that the modelling with rigid slabs 

allows for a more localised damage on the first floor of the structure. In 

particular, it is possible to observe that, the demand for displacement has a 

plastification of all links on the first floor and the complete collapse of some of 

these. Compared to the more deformable floors where there is a low damage 

to upper floors, in fact almost all masonry walls are preserved in the elastic 

range. 
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6.4.6 N2 analyses with real spectra 

In this section the results obtained from the previous method to the case 

where the demand is the actual response spectra of the ground excitation 

were time history of ground acceleration of R150 and R250 is presented in the 

following Figure 6.54 and Figure 6.55. 

 
Figure 6.54: Modelled earthquake accelerogram for R150. 

 
Figure 6.55: Modelled earthquake accelerogram for R250. 
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6.4.6.1 Analysis of response spectrum 

From the time history of the ground acceleration, the elastic response spectra 

that must be used for the N2 analysis can be obtained. In particular, every 

point of the spectrum is characterised by a couple of values:  

- Sae: spectral acceleration, which is the maximum absolute acceleration of 

a SDOF system, at the given mass m, with stiffness k and viscous damping 

c;  

- T: period of vibration of the SDOF system, which takes values ranging 

from 0 (infinitely rigid system) and ∞ (infinitely deformable system). 

 
Figure 6.56: SDOF system. 

For each point in the spectrum, the SDOF system (reported in Figure 6.56) 

first period of vibration must be determined: 

 




2T ,

 
(6.51)

 
where ω is the natural pulse of vibration, equal to: 

 
m
k

0 .
 

(6.52)
 

It is also possible to obtain the relative damping, equal to the ratio between 

the actual and the critical damping of the structure: 

 
crc
c

 .
 

(6.53)
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where: 

 kmccr  2 .
 

(6.54)
 

The SDOF system is subjected to seismic motion at its base. Ultimately, three 

forces will act on the SDOF system: 

- inertia force: by definition, the product of mass by acceleration:  

  sI xxmF   ;
 

(6.55)
 - force of viscous damping:  

 xcFc  ;
 

(6.56)
 - elastic force: 

 xkFe  ;
 

(6.57)
 Applying the D'Alembert principle is possible to obtain the differential 

equation that governs the problem: 

0 ecI FFF
 

->   0 xkxcxxm s  ;
 

(6.58)
 By solving this differential equation, the functions of the relative and absolute 

acceleration displacements and velocities can be calculated. 

In particular: 

 
sxmxkxcxm   .

 
(6.59)

 The associated homogeneous equation is: 

 0 xkxcxm  ,
 

(6.60)
 by dividing by the mass: 

 0 x
m
kx

m
cx  ,

 
(6.61)

 
where: 

 
02  

m
c

,
 

(6.62)
 

by substitution: 

 02 2
00  xxx   .

 
(6.63)
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The associated polynomial is: 

 02 2
00

2   .
 

(6.64)
 The solutions are: 

 2
0

2
0

2
0   .

 
(6.65)

 There are the possible cases: 

1) 02
0

2
0

2   , or: crcc  , or: 1 ; (6.66) 

2) 02
0

2
0

2   , or: crcc  , or: 1 ; (6.67) 

3) 02
0

2
0

2   , or: crcc  , or: 1 . (6.68) 

Looking at the third case, which is natural for buildings, the following solution, 

with real and imaginary parts is valid: 

 2
00 1   i .

 
(6.69)

 It can define: 

 2
0 1  d .

 
(6.70)

 However, for normal building: 

00,105,0  , -> 0 d . (6.71) 

Finally, the solution is: 

     tctcex dd
t    sincos 21

0 .
 

(6.72)
 The two constants can be obtained by the imposition of the initial conditions: 

   00 xtx  ;
 

(6.73)
 

   00 xtx   ; (6.74) 

with the previous equation: 

    










  txxtxex d

d
d

t 



 sincos 000

0
0


.
 

(6.75)
 

Only maximum absolute acceleration, coupled with the previously defined 

period of vibration, is a single point in the response spectrum. 

It is therefore necessary to proceed iteratively to solve the dynamical problem 

of the simple oscillator many times. To do this a computer code was written in 
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the program Mathematica, which solves the above problem using a step–by–

step  process. The Figures 6.57 – 6.59 show the obtained response spectra. 

 
Figure 6.57: Real elastic acceleration spectrums and comparisons. 

 
Figure 6.58: Real elastic displacement spectrum. 
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Figure 6.59: Real elastic spectrum in AD format. 

In the following Table 6.30 and Table 6.31 the results of N2 method are 

reported. The period of vibration of the end of the tract with a constant 

spectral acceleration assumed was equal to: 

 sTC 3,0 .
 

(6.76)
 Next, using the above formulas for the structure and assuming a behaviour 

with rigid floor slabs, the results obtained are presented in the following 

tables.  
Table 6.30: Ductility factor. 

 R150 R250 

Sae [m/s2] 27,79 39,69 

Rµ 2,83 4,04 

µ 6,41 10,00 

Table 6.31: Displacement demand. 

[mm] R150 R250 

Sde 2,71 5,39 

Sd 6,15 13,33 

Dt 8,17 17,73 
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It should be noted that, for the analysis of the elastic displacement, a linear 

interpolation has been adopted: 

  
12

12
11 *

TT
SSTTSS dede

dede 


 .
 

(6.77)
 

In the Figures 6.60 – 6.62, the comparisons between the demand and the real 

capacity of the system under the two time histories are presented. 

 
Figure 6.60: Capacity vs. demand for R150 and rigid floors. 

 
Figure 6.61: Capacity versus demand for R250 and rigid floors. 

The results give an elastic response, which is in clear contrast to the observed 

collapse of the experimental model. 
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6.4.7 Evolution of the axial forces 

The link elements used in the analysis conducted do not enable to define a 

variable behaviour depending on the value of axial force in the element. So a 

constant normal stress in each component is used and it must verified a 

posteriori that the changes in axial forces are not big. 

During all the analysis the normal stress remains constant. This assumption is 

acceptable for small buildings, consisting of a maximum of 2 or 3 floors. The 

following Figure 6.62 show the numbering of link elements. Elements 1 to 8 

are parallel to the direction of seismic loading. 

These changes are measured from an initial value of normal stress (step 0) 

due only to vertical loads.  

The variation of axial forces are shown in the following section. There are 

large variations in normal stress in most of the elements. Only the links 

belonging to the last two floors and links in baricentral position (i.e., 5 and 7) 

remain essentially unchanged. 

This result is expected because of the height of the structure but in the next 

sections it will be shown that this fact does not lead to large errors when 

comparing the results of this model with experimental results. 

 
Figure 6.62: Plant and number of piers. 
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6.4.8 Manual analysis of the axial force from experiments 

In the following tables mechanical parameters of masonry piers used to define 

the normal stresses are presented. In particular, first the center of gravity, 

which will be the origin of the new reference system, is obtained.  For the 

general pier the following data are known (see Figure 6.63):  

- xi and yi are the coordinate of center of gravity of the cross section of the 

wall with respect to global reference system with origin in O;  

- dxi and dyi are the length and thickness of the pier. 

 
Figure 6.63: Change of reference system. 

The following properties can be obtained in Table 6.32 and Table 6.33: 

- area: yixii ddA  ; (6.78) 

- static moment with respect to the x axis: iixi yAS  ; (6.79) 

- static moment with respect to the y axis: iiyi xAS  ; (6.80) 

- coordinates of center of gravity:  

 



 


i

ii

i

yi
G A

xA
A
S

x ,
 



 


i

ii

i

xi
G A

yA
A
S

y ;
 

(6.81)
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- coordinates of pier with respect to new reference system:  

 Gii xxx  ,
 

Gii
yyy  ;

 
(6.82)

 - pier’s moments of inertia with respect to new reference system:  

 
2

3

12 ii
yixi

x yA
dd

I
i




 ,
 

2
3

12 ii
xiyi

y xA
dd

I
i




 .
 

(6.83)

 
Table 6.32: Piers mechanical characteristics. 

i xi yi dxi dyi Ai Sxi Syi xi yi Ixi Iyi 

[] [m] [m] [m] [m] [m2] [m3] [m3] [m] [m] [m4] [m4] 

1 0,119 0,000 0,313 0,075 0,023 0,0000 0,0028 -0,937 -0,791 0,01468 0,02061 

2 0,722 0,000 0,269 0,075 0,020 0,0000 0,0145 -0,334 -0,791 0,01262 0,00226 

3 1,391 0,000 0,269 0,075 0,020 0,0000 0,0280 0,334 -0,791 0,01262 0,00226 

4 1,994 0,000 0,313 0,075 0,023 0,0000 0,0467 0,938 -0,791 0,01468 0,02061 

5 1,056 0,859 0,550 0,075 0,041 0,0355 0,0436 0,000 0,068 0,00021 0,00002 

6 0,119 1,638 0,313 0,075 0,023 0,0384 0,0028 -0,937 0,846 0,01681 0,02061 

7 1,056 1,638 0,550 0,075 0,041 0,0675 0,0436 0,000 0,846 0,02958 0,00002 

8 1,994 1,638 0,313 0,075 0,023 0,0384 0,0467 0,938 0,846 0,01681 0,02061 

9 0,000 0,156 0,075 0,238 0,018 0,0028 0,0000 -1,056 -0,635 0,00726 0,01996 

10 0,000 0,819 0,075 0,469 0,035 0,0288 0,0000 -1,056 0,028 0,00067 0,03986 

11 0,000 1,481 0,075 0,238 0,018 0,0264 0,0000 -1,056 0,690 0,00857 0,01996 

12 0,819 0,272 0,075 0,469 0,035 0,0096 0,0288 -0,238 -0,519 0,01012 0,00263 

13 1,056 1,248 0,075 0,703 0,053 0,0658 0,0557 0,000 0,457 0,01321 0,00217 

14 1,294 0,272 0,075 0,469 0,035 0,0096 0,0455 0,237 -0,519 0,01012 0,00263 

15 2,113 0,156 0,075 0,238 0,018 0,0028 0,0376 1,056 -0,635 0,00726 0,01996 

16 2,113 0,819 0,075 0,469 0,035 0,0288 0,0743 1,056 0,028 0,00067 0,03986 

17 2,113 1,481 0,075 0,238 0,018 0,0264 0,0376 1,056 0,690 0,00857 0,01996 
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The moments of inertia are: 

   42540,0 mII
i

yy ,
 

  41844,0 mII
ixx .

 
(6.84)

 The total area of piers is: 

   24812,0 mAi .
 

(6.85)
 The total static moment are: 

   33806,0 mS xi ,
 

  35082,0 mS yi .
 

(6.86)

 The coordinates of the center of gravity, ultimately, are: 

 mxG 056,1 ,
 

myG 7910,0 .
 

(6.87)

 The normal stresses from pushover analysis with rigid floors, for each pier 

and each step of the analysis  are in the Table 6.33. In particular, only shows 

the first 11 steps, or those that provide the highest level of achieved shear.  

The results are also graphically show in Figure 6.64.  



Gerardo Carpentieri  Matr. 06201/00179 

262 

Table 6.33: Change of axial force in link element for rigid floors. 
Step 1 2 3 4 5 6 7 8 9 10 11 

i ΔNi 

[] [N] 
1 3778,40 4289,52 4708,10 4708,16 4641,57 4641,69 4641,82 4641,57 4641,69 4641,82 4641,57 
2 948,01 1083,96 1230,32 1230,34 1213,71 1213,74 1213,77 1213,71 1213,74 1213,77 1213,71 
3 -945,89 -1081,34 -1227,76 -1227,79 -1211,20 -1211,23 -1211,26 -1211,20 -1211,23 -1211,26 -1211,20 
4 -3777,95 -4289,19 -4707,78 -4707,84 -4641,24 -4641,36 -4641,49 -4641,24 -4641,36 -4641,49 -4641,24 
5 2,38 2,75 2,90 2,90 2,86 2,86 2,86 2,86 2,86 2,86 2,86 
6 2264,85 2658,41 3631,59 3631,73 3591,83 3591,90 3591,98 3591,83 3591,90 3591,98 3591,83 
7 -0,13 -0,15 -0,36 -0,36 -0,36 -0,36 -0,36 -0,36 -0,36 -0,36 -0,36 
8 -2265,38 -2659,03 -3632,24 -3632,38 -3592,47 -3592,55 -3592,62 -3592,47 -3592,55 -3592,62 -3592,47 
9 2434,50 2846,37 3802,93 3803,07 3760,21 3760,29 3760,37 3760,21 3760,29 3760,37 3760,21 

10 4604,77 5299,59 6419,79 6419,95 6338,86 6339,01 6339,16 6338,86 6339,01 6339,16 6338,86 
11 3783,48 4296,48 4752,07 4752,13 4685,48 4685,61 4685,73 4685,48 4685,61 4685,73 4685,48 
12 1129,34 1297,85 1533,58 1533,61 1513,72 1513,76 1513,79 1513,72 1513,76 1513,79 1513,72 
13 1,55 1,80 1,95 1,95 1,92 1,92 1,92 1,92 1,92 1,92 1,92 
14 -1127,33 -1295,43 -1531,48 -1531,51 -1511,66 -1511,69 -1511,73 -1511,66 -1511,69 -1511,73 -1511,66 
15 -2435,07 -2847,04 -3803,55 -3803,69 -3760,82 -3760,90 -3760,98 -3760,82 -3760,90 -3760,98 -3760,82 
16 -4607,21 -5302,44 -6422,53 -6422,69 -6341,55 -6341,71 -6341,86 -6341,56 -6341,71 -6341,86 -6341,56 
17 -3788,31 -4302,13 -4757,52 -4757,58 -4690,85 -4690,97 -4691,10 -4690,85 -4690,97 -4691,10 -4690,85 
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Figure 6.64: Change of axial force evolution. SAP2000® analysis. 

In the analysis that follow it is used the resulting bending moments that are 

from the execution of tests on M3 model, which will be described in detail in 

the next paragraph. In particular, the bending moment was calculated for 10 

points of the test, for which they are known by the Table 6.34, the values of the 

floor forces. 

These points are the most important of the test, and those that constitute an 

overall behaviour of the constitutive law. Ultimately, for each step of loading, 

the bending moment is: 

 



4

1i
ii dFM .

 
(6.88)

 
The normal stress in each pier will be: 

 0  i
y

i x
I
M

.
 

(6.89)
 

By taking the normal compression stress as positive; σ0 is the normal stress 

due to only vertical loads compression in step 0. 

The normal stresses can be obtained by multiplying stress by the area of cross 

section of piers: 

 iii AN  .
 

(6.90)
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Ultimately, the variations of normal stresses for all walls at each load step of 

pushover analysis can be defined. Starting from the initial normal stress due 

to vertical loads (N0), used to obtain the resistance to shear of the panel, those 

variations are: 

 0NNN ii  .
 

(6.91)
 The results obtained by the application of the previous relationships are 

reported in the Tables 6.35 – 6.37 and in Figure 6.65.  
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Table 6.34: Analysis of the bending moment by the test on M3 model. 

Step 
F1 F2 F3 F4 d1 d2 d3 d4 M 

[N] [N] [N] [N] [m] [m] [m] [m] [Nm] 
1 -1632,44924 -2299,3523 -2662,3215 -2697,4829 0,663 1,326 1,989 2,652 16580,337 
2 -4464,77465 -4529,1915 -4605,1194 -4541,0273 0,663 1,326 1,989 2,652 30168,240 
3 4616,612651 5282,5179 5403,8542 5891,0287 0,663 1,326 1,989 2,652 36436,707 
4 -3823,85099 -5761,7414 -6033,6542 -5548,3224 0,663 1,326 1,989 2,652 36890,371 
5 4959,861393 6399,4035 7005,7297 7101,7008 0,663 1,326 1,989 2,652 44542,104 
6 -3390,73994 -4729,6703 -7305,2257 -9949,5206 0,663 1,326 1,989 2,652 49435,826 
7 -3729,09208 -6584,703 -8206,6442 -9766,4676 0,663 1,326 1,989 2,652 53427,392 
8 -7989,20841 -7986,3291 -8111,9463 -9153,9933 0,663 1,326 1,989 2,652 56297,769 
9 434,055797 6935,3956 10464,879 14198,298 0,663 1,326 1,989 2,652 67952,645 

10 -6975,42534 -10355,08 -11663,789 -12892,274 0,663 1,326 1,989 2,652 75745,132 
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Table 6.35: Axial stress in piers. 
Step 1 2 3 4 5 6 7 8 9 10 

i σ0 σi 

[] [MPa] [MPa] 
1 0,062 0,000 -0,050 -0,073 -0,074 -0,103 -0,121 -0,136 -0,146 -0,189 -0,218 
2 0,074 0,052 0,035 0,026 0,026 0,016 0,009 0,004 0,000 -0,015 -0,025 
3 0,074 0,096 0,114 0,122 0,123 0,133 0,139 0,145 0,148 0,164 0,174 
4 0,062 0,123 0,173 0,196 0,198 0,226 0,244 0,259 0,269 0,313 0,341 
5 0,110 0,110 0,110 0,110 0,110 0,110 0,110 0,110 0,110 0,110 0,110 
6 0,081 0,020 -0,030 -0,054 -0,055 -0,083 -0,101 -0,116 -0,127 -0,170 -0,199 
7 0,081 0,081 0,081 0,081 0,081 0,081 0,081 0,081 0,081 0,081 0,081 
8 0,081 0,142 0,192 0,215 0,217 0,245 0,263 0,278 0,289 0,332 0,361 
9 0,083 0,014 -0,043 -0,069 -0,071 -0,102 -0,123 -0,139 -0,151 -0,200 -0,232 

10 0,088 0,019 -0,038 -0,064 -0,066 -0,098 -0,118 -0,135 -0,147 -0,195 -0,227 
11 0,083 0,014 -0,043 -0,069 -0,071 -0,102 -0,123 -0,139 -0,151 -0,200 -0,232 
12 0,136 0,120 0,108 0,102 0,101 0,094 0,090 0,086 0,083 0,072 0,065 
13 0,068 0,068 0,068 0,068 0,068 0,068 0,068 0,068 0,068 0,068 0,068 
14 0,136 0,151 0,164 0,170 0,170 0,177 0,182 0,186 0,188 0,199 0,207 
15 0,083 0,152 0,208 0,234 0,236 0,268 0,288 0,305 0,317 0,365 0,398 
16 0,088 0,157 0,213 0,239 0,241 0,273 0,293 0,310 0,322 0,370 0,403 
17 0,083 0,152 0,208 0,234 0,236 0,268 0,288 0,305 0,317 0,365 0,398 
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Table 6.36: Axial force in piers. 
Step 0 1 2 3 4 5 6 7 8 9 10 

i Ni 
[] [MPa] 
1 -1445,68 -11,31 1164,19 1706,48 1745,73 2407,69 2831,05 3176,36 3424,68 4432,95 5107,08 
2 -1742,08 -1058,00 -697,49 -531,17 -519,14 -316,12 -186,28 -80,38 -4,22 305,00 511,75 
3 -1741,79 -1938,27 -2298,90 -2465,27 -2477,31 -2680,39 -2810,28 -2916,22 -2992,40 -3301,73 -3508,54 
4 -1445,68 -2880,12 -4055,66 -4597,97 -4637,22 -5299,20 -5722,58 -6067,91 -6316,23 -7324,55 -7998,71 
5 -2585,84 -4550,99 -4550,92 -4550,88 -4550,88 -4550,84 -4550,82 -4550,80 -4550,78 -4550,72 -4550,68 
6 -1898,21 -463,83 711,67 1253,96 1293,21 1955,16 2378,52 2723,84 2972,15 3980,43 4654,56 
7 -1898,21 -3340,76 -3340,69 -3340,66 -3340,66 -3340,62 -3340,59 -3340,57 -3340,56 -3340,50 -3340,46 
8 -1898,21 -3332,65 -4508,19 -5050,50 -5089,75 -5751,73 -6175,11 -6520,44 -6768,77 -7777,08 -8451,24 
9 -1941,58 -247,39 759,16 1223,50 1257,11 1823,92 2186,43 2482,11 2694,74 3558,09 4135,33 

10 -2053,04 -655,39 1331,00 2247,37 2313,69 3432,28 4147,69 4731,20 5150,82 6854,62 7993,79 
11 -1941,49 -247,32 759,23 1223,57 1257,18 1823,99 2186,50 2482,18 2694,81 3558,16 4135,40 
12 -3181,55 -4227,62 -3780,82 -3574,69 -3559,78 -3308,17 -3147,25 -3016,00 -2921,61 -2538,37 -2282,13 
13 -1583,45 -3562,52 -3562,44 -3562,39 -3562,39 -3562,34 -3562,31 -3562,28 -3562,26 -3562,19 -3562,13 
14 -3181,43 -5317,71 -5764,40 -5970,47 -5985,38 -6236,92 -6397,80 -6529,02 -6623,38 -7006,52 -7262,69 
15 -1941,97 -2704,15 -3710,73 -4175,09 -4208,69 -4775,53 -5138,05 -5433,74 -5646,38 -6509,76 -7087,02 
16 -2053,45 -5503,78 -7490,23 -8406,64 -8472,96 -9591,59 -10307,02 -10890,56 -11310,19 -13014,05 -14153,25 
17 -1941,87 -2704,08 -3710,66 -4175,02 -4208,63 -4775,46 -5137,98 -5433,67 -5646,31 -6509,69 -7086,95 

            M [Nm] 1,06 16242,94 29553,52 35694,05 36138,45 43634,02 48427,86 52337,96 55149,75 66566,76 74200,20 
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Table 6.37: Variation of the axial force in piers. 
Step 1 2 3 4 5 6 7 8 9 10 

i ΔNi 

[] [N] 

1 1434,38 2609,88 3152,17 3191,41 3853,37 4276,73 4622,04 4870,36 5878,63 6552,77 

2 439,91 800,42 966,73 978,77 1181,78 1311,62 1417,53 1493,68 1802,91 2009,66 

3 -440,05 -800,68 -967,05 -979,09 -1182,18 -1312,06 -1418,00 -1494,18 -1803,51 -2010,32 

4 -1434,43 -2609,98 -3152,29 -3191,54 -3853,52 -4276,90 -4622,22 -4870,55 -5878,86 -6553,02 

5 0,09 0,16 0,19 0,19 0,23 0,25 0,28 0,29 0,35 0,39 

6 1434,38 2609,88 3152,17 3191,41 3853,37 4276,73 4622,04 4870,36 5878,63 6552,77 

7 0,09 0,16 0,19 0,19 0,23 0,25 0,28 0,29 0,35 0,39 

8 -1434,43 -2609,98 -3152,29 -3191,54 -3853,52 -4276,90 -4622,22 -4870,55 -5878,86 -6553,02 

9 1228,21 2234,76 2699,10 2732,71 3299,52 3662,03 3957,71 4170,34 5033,69 5610,93 

10 2423,84 4410,23 5326,60 5392,92 6511,52 7226,92 7810,44 8230,05 9933,85 11073,02 

11 1228,21 2234,76 2699,10 2732,71 3299,52 3662,03 3957,71 4170,34 5033,69 5610,93 

12 545,20 992,01 1198,13 1213,05 1464,66 1625,58 1756,83 1851,22 2234,46 2490,70 

13 0,11 0,20 0,24 0,24 0,29 0,33 0,35 0,37 0,45 0,50 

14 -545,06 -991,75 -1197,81 -1212,73 -1464,27 -1625,14 -1756,36 -1850,72 -2233,86 -2490,03 

15 -1228,25 -2234,83 -2699,19 -2732,80 -3299,63 -3662,16 -3957,85 -4170,48 -5033,86 -5611,12 

16 -2423,93 -4410,38 -5326,79 -5393,11 -6511,74 -7227,17 -7810,71 -8230,34 -9934,20 -11073,40 

17 -1228,25 -2234,83 -2699,19 -2732,80 -3299,63 -3662,16 -3957,85 -4170,48 -5033,86 -5611,12 
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Figure 6.65: Axial force evolution by the test. 
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6.5 Comparisons between the methods and 

experimental data 

In this section there are results obtained from shaking table tests of model M3 

and then analyse them to obtain the force displacement curve that describes 

the real behaviour of the structure. The purpose is to make comparisons 

between the measured and simulated response of the structure. 

6.5.1 Data acquisition 

During the testing on shaking table experimental data was collected using 

different instruments such as accelerometers and LVDTs (see Figure 6.66). 

These data were recorded at regular time intervals of 0,00125 s. The model 

M3 has been subject to different levels of seismic action gradually increased to 

simulate different levels of performance that is required of the structure 

during an earthquake. In particular, these load levels are referred to as R150, 

R200 and R250. 

 
Figure 6.66: Axonometric of the measurement points of experimental data [55]. 
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In each measuring point, shown in the previous figure, displacements and 

accelerations during the entire duration of the three tests were recorded. In 

total approximately 75.000 measurements were recorded at each point. List of 

displacement and acceleration measuring points is in Table 6.38. 
Table 6.38: Name and type of experimental data collected during the test [55]. 

Position Displacement Acceleration 

0 d0 a0 

1 d1L a1L 

2 d1M a1M 

3 d1R a1R 

4 d2L a2L 

5 d2M a2M 

6 d2R a2R 

7 d3L a3L 

8 d3M a3M 

9 d3R a3R 

10 d4L a4L 

11 d4M a4M 

12 d4R a4R 

The following Figures 6.67 – 6.69 shows the state of the M3 model at the end 

of execution of the three seismic tests. 
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Figure 6.67: Cracks in the peripheral walls of model M3, observed after test run R100 [55]. 

 
Figure 6.68: Typical diagonally oriented shear cracks in the walls of model M3 at maximum 

resistance after test run R150 [55]. 
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Figure 6.69: Severe damage to the walls in the ground floor and heavy damage to the walls in the 

first storey near collapse of model M3 after test run R250 [55]. 
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6.5.2 Data analysis 

The original purpose of the analysis of previous experimental data is to get the 

curves that show the evolution of the base shear as a function of displacement 

of a control node. In particular, the curves with reference displacements 

recorded on the top floor and with displacements recorded on the first floor 

are needed. 

Firstly, the accelerations recorded at each level are the mean value of 

acceleration recorded on the right side and left side: 

 
2

iRiL
i

aaa 
 ,

 
for: 4,...,1i .

 
(6.92)

 
The equivalent inertial forces applied to each building floor are the product of 

mass multiplied by acceleration: 

 iii amF  ,
 

for: 4,...,1i .
 

(6.93)
 The floor shear are the sum of forces in all floors: 

 



n

ij
ji FV ,

 
for: 4n .

 
(6.94)

 
With regard to the displacements, the absolute displacements of each plan are 

assumed equal to the displacement recorded at the midpoint of each plan: 

 iMi dd  ,
 

for: 4,...,1i .
 

(6.95)
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6.5.3 Shear versus displacement curves 

The following Figures 6.70 – 6.75, show the trends of the base shear curves in 

terms of the displacements on the top floor and the first floor. 

 
Figure 6.70: Base shear vs. first floor displacement. R150. 

 
Figure 6.71: Base shear vs. first floor displacement. R200. 
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Figure 6.72: Base shear vs. first floor displacement. R250. 

 
Figure 6.73: Base shear vs. fourth floor displacement. R150. 
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Figure 6.74: Base shear vs. fourth floor displacement. R200. 

 
Figure 6.75: Base shear vs. fourth floor displacement. R250. 
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6.5.4 Idealisations 

As can be seen by experimental data, a complex nonlinear behaviour was 

measured that cannot be used directly to make comparisons. The results, 

therefore, can be represented by a modelling. 

These idealisations were obtained qualitatively and have been assumed to 

consist of several linear segments chosen so as to approximate the obtained 

experimental data (see Figure 6.76 and Figure 6.77). 

 
Figure 6.76: Base shear vs. first floor displacement Idealisation. 

 
Figure 6.77: Base shear vs. fourth floor displacement Idealisation. 
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6.5.5 Comparisons 

At this point a comparisons between the idealised curves of the real behaviour 

of the structure and the pushover curves can be done. Those curves were 

obtained measuring the displacements at the first (bottom idealisation) and 

top floor (top idealisation). The pushover curves were obtained previously by 

different mathematical model (see Figures 6.78 – 6.82). 

 
Figure 6.78: Comparison between experimental curve and one storey model. 

 
Figure 6.79: Comparison between experimental curve and four storey model with control 

displacement at the first floor slab. 
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Figure 6.80: Comparison between experimental curve and four storey model with rigid floors and 

control displacement at the top of the structure. 

 
Figure 6.81: Comparison between experimental curve and four storey model with control 

displacement at the top. 

The previous Figure 6.80 and Figure 6.81 show that the structure’s modelling 

with rigid floors, compared to that with deformable floors, enables a more 

accurate modelling. In particular, the stiffness of the system in the initial 

stages of elastic loading is very similar to the modelling that adopting rigid 

floors. 
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Figure 6.82: Comparison between one storey model and four storey model with control 

displacement at first storey. 
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7. Conclusions 

This work addressed the issue of modelling masonry structures under seismic 

action. Although several contributions are currently available on this subject 

in the scientific literature, the present work is clearly intended at  formulating 

and validating a design-oriented numerical procedure which actually 

implements the capacity models provided by the structural codes currently in 

force in Italy and Europe. Thus, a quick overview of the analysis methods 

which can be carried out by means of the FEM codes usually employed by 

practitioners is firstly presented.  

Nevertheless, since those codes are not specifically thought for masonry 

structures, they often lack in simulating some specific effects, such as the 

interaction between axial force and shear strength. Consequently, a novel 

practice-oriented model is formulated by adopting the well-known 

“equivalent frame” approach and introducing nonlinear phenomena through a 

“lumped-plasticity” technique. 

This model has been implemented in MatLab® (see chapter 5) and is able to 

simulate all failure modes of masonry walls and spandrels actually considered 

within the relevant structural codes. 

The numerical results carried out by means of the various numerical models 

considered in the present study led to reasonably accurate simulations of the 

mechanical behaviour of masonry structures observed in some experimental 

tests available in the scientific literature. 

However, the novel numerical procedure described in chapter 5 should be still 

considered as a preliminary proposal, as some of the algorithms implemented 
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therein should be further enhanced in terms of numerical stability and 

efficiency.  

The possible extension of the present model to the case of fully 3D structures 

as well as the implementation of a numerical routine for performing nonlinear 

time-history analyses are among the next developments of this research. 
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